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An English Translation:

Graph Theory
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Let G = (V, E) denote a simple directed graph with a vertex set V and an edge set F,

and let N = [G, ¢| denote a network obtained from G by assigning a real value c(e) > 0
to each edge ¢ € E as its capacity. For vertex subsets X,¥ C V, let E(X,Y) denote
the set of edges that leave a vertex in X and enter a vertex in Y. Let R, be the set
of nonnegative reals. For two designated vertices s, € V, an (s, t)-flow is defined to be
a mapping f : E — R, which satisfies - cp(yv_qu f(&) — > eaE(v—fupop £ (€) = 0,
Yu € V — {s,t} (flow conservation law) and f(e) < ¢(e), Ye € F (capacity constraint),
and its flow value val(f) is defined to be
>, J@- Y fe
ecB{{s},V—{s}) eeB(V—{s},{s})

An (s,t)-cut is defined to be a vertex subset X C V such that s € X and ¢ € V — X, and
its capacity cap(X)} is defined to be

Z c(e).
e E(X,V—X)
Answer the following questions.
(i) Prove that for any (s, ¢)-flow f and any (s, ¢)-cut X
wlify=" > fle- > fe)
e€E(X,V - X) eEE(V-X,X)

holds.

(ii) For a given (s,¢)-How f, show how to construct its residual network N p =G, =
(Vs Ey), cg).

(iii) For an (s,?)-flow f, let S be the set of all vertices reachable from s in the residual
network Ny, and assume that ¢ € S holds. Prove that § is an (s,t)-cut in N that

minimizes the capacity.

(iv) Prove that any (s,t)-cut X in N that minimizes the capacity satisfies X 2 S for
the (s,¢)-cut S in (iii).



