## グラフ理論

2

G = (V, E) を節点集合 V,枝集合 E から成る単純有向グラフとし,N = [G, c] を G の各枝  $e \in E$  に実数値の容量 c(e) > 0 を与えて得られるネットワークとする.節点の部分集合  $X, Y \subseteq V$  に対し,X 内の点から Y 内の点へ向かう枝の集合を E(X, Y) と記す.非負実数 の集合を  $\mathbb{R}_+$  で表す.指定された二点  $s, t \in V$  に対し,流量保存則  $\sum_{e \in E(V-\{v\},\{v\})} f(e) - \sum_{e \in E(V-\{v\},\{v\})} f(e) = 0$ , $\forall v \in V - \{s,t\}$  および容量制約  $f(e) \leq c(e)$ , $\forall e \in E$  を満たす関数  $f: E \to \mathbb{R}_+$  を (s,t) フローと呼び,その流量 val(f) を

$$\sum_{e \in E(\{s\}, V - \{s\})} f(e) - \sum_{e \in E(V - \{s\}, \{s\})} f(e)$$

で定める. また、 $s\in X, t\in V-X$  なる節点の部分集合  $X\subseteq V$  を (s,t) カットと呼び、その容量  $\mathrm{cap}(X)$  を

$$\sum_{e \in E(X,V-X)} c(e)$$

で定める. 以下の問いに答えよ.

(i) 任意の(s,t)フローfと(s,t)カットXに対し、等式

$$\operatorname{val}(f) = \sum_{e \in E(X, V - X)} f(e) - \sum_{e \in E(V - X, X)} f(e)$$

が成り立つことを証明せよ.

- (ii) 与えられた (s,t) フロー f に対して定められる残余ネットワーク  $N_f = [G_f = (V, E_f), c_f]$  の作り方を説明せよ.
- (iii) ある (s,t) フロー f に対し、残余ネットワーク  $N_f$  において s から到達可能な節点の集合を S とする、 $t \not\in S$  のとき、S は N において容量を最小にする (s,t) カットであることを示せ、
- (iv) N において容量を最小にする任意の (s,t) カット X は、(iii) の (s,t) カット S に対して、 $X \supseteq S$  を満たすことを説明せよ.

## An English Translation:

## Graph Theory

2

Let G = (V, E) denote a simple directed graph with a vertex set V and an edge set E, and let N = [G, c] denote a network obtained from G by assigning a real value c(e) > 0 to each edge  $e \in E$  as its capacity. For vertex subsets  $X, Y \subseteq V$ , let E(X, Y) denote the set of edges that leave a vertex in X and enter a vertex in Y. Let  $\mathbb{R}_+$  be the set of nonnegative reals. For two designated vertices  $s, t \in V$ , an (s, t)-flow is defined to be a mapping  $f : E \to \mathbb{R}_+$  which satisfies  $\sum_{e \in E(\{v\}, V - \{v\})} f(e) - \sum_{e \in E(V - \{v\}, \{v\})} f(e) = 0$ ,  $\forall v \in V - \{s, t\}$  (flow conservation law) and  $f(e) \leq c(e)$ ,  $\forall e \in E$  (capacity constraint), and its flow value val(f) is defined to be

$$\sum_{e \in E(\{s\}, V - \{s\})} f(e) - \sum_{e \in E(V - \{s\}, \{s\})} f(e).$$

An (s,t)-cut is defined to be a vertex subset  $X \subseteq V$  such that  $s \in X$  and  $t \in V - X$ , and its capacity  $\operatorname{cap}(X)$  is defined to be

$$\sum_{e \in E(X,V-X)} c(e).$$

Answer the following questions.

(i) Prove that for any (s,t)-flow f and any (s,t)-cut X

$$val(f) = \sum_{e \in E(X, V - X)} f(e) - \sum_{e \in E(V - X, X)} f(e)$$

holds.

- (ii) For a given (s,t)-flow f, show how to construct its residual network  $N_f = [G_f = (V, E_f), c_f]$ .
- (iii) For an (s,t)-flow f, let S be the set of all vertices reachable from s in the residual network  $N_f$ , and assume that  $t \notin S$  holds. Prove that S is an (s,t)-cut in N that minimizes the capacity.
- (iv) Prove that any (s,t)-cut X in N that minimizes the capacity satisfies  $X \supseteq S$  for the (s,t)-cut S in (iii).