オペレーションズ・リサーチ

3

関数 $f: \mathbb{R}^n \to \mathbb{R}$ を連続的微分可能な凸関数とし、 $S = \{x \in \mathbb{R}^n \mid a^{\mathsf{T}}x = b\}$ とする.ただし,a は 0 でない n 次元ベクトル,b はスカラーであり, $^{\mathsf{T}}$ はベクトルの転置を表す.

次の凸計画問題を考える.

(P): Minimize f(x) subject to $x \in S$

さらにパラメータ $z \in \mathbb{R}^n$ を含む次の凸 2 次計画問題を考える.

P(z): Minimize
$$\nabla f(z)^{\mathsf{T}} y + \frac{1}{2} (y - z)^{\mathsf{T}} (y - z)$$

subject to $y \in S$

ここで、決定変数は y である.任意の $z \in \mathbb{R}^n$ に対して問題 P(z) は唯一の最適解 $\bar{y}(z)$ をもつ.

以下の問いに答えよ.

- (i) $z \in S$ とする. 問題 P(z) のカルーシュ・キューン・タッカー (Karush-Kuhn-Tucker) 条件を用いて $\bar{y}(z)$ を求めよ.
- (ii) $x \in S$ かつ $\bar{y}(x) = x$ であるとき, x は問題 (P) の最適解であることを示せ.
- (iii) $x \in S$ かつ $\bar{y}(x) \neq x$ であるとき,

$$\nabla f(\boldsymbol{x})^{\mathsf{T}}(\bar{\boldsymbol{y}}(\boldsymbol{x}) - \boldsymbol{x}) < 0, \quad \boldsymbol{a}^{\mathsf{T}}(\bar{\boldsymbol{y}}(\boldsymbol{x}) - \boldsymbol{x}) = 0$$

であることを示せ.

(iv) $\bar{y}(x) \neq x$ であるとき、x は問題 (P) の最適解でないことを示せ、

An English Translation:

Operations Research

3

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable convex function, and let $S = \{x \in \mathbb{R}^n \mid a^\top x = b\}$, where a is an n-dimensional nonzero vector, b is a scalar, and the superscript $^\top$ denotes transposition of a vector.

Consider the following convex programming problem:

(P): Minimize
$$f(x)$$
 subject to $x \in S$.

Moreover, consider the following convex quadratic programming problem with a vector $z \in \mathbb{R}^n$ of parameters:

$$\begin{aligned} \mathbf{P}(\boldsymbol{z}) : & \text{ Minimize } & \nabla f(\boldsymbol{z})^{\mathsf{T}} \boldsymbol{y} + \frac{1}{2} (\boldsymbol{y} - \boldsymbol{z})^{\mathsf{T}} (\boldsymbol{y} - \boldsymbol{z}) \\ & \text{ subject to } & \boldsymbol{y} \in S, \end{aligned}$$

where y is the vector of decision variables. For each $z \in \mathbb{R}^n$, problem P(z) has a unique optimal solution $\bar{y}(z)$.

Answer the following questions.

- (i) Let $z \in S$. Obtain $\bar{y}(z)$ by using Karush-Kuhn-Tucker conditions for problem P(z).
- (ii) Suppose that $x \in S$ and $\bar{y}(x) = x$. Then show that x is an optimal solution to problem (P).
- (iii) Suppose that $x \in S$ and $\bar{y}(x) \neq x$. Then show that

$$\nabla f(\boldsymbol{x})^{\mathsf{T}}(\bar{\boldsymbol{y}}(\boldsymbol{x}) - \boldsymbol{x}) < 0, \quad \boldsymbol{a}^{\mathsf{T}}(\bar{\boldsymbol{y}}(\boldsymbol{x}) - \boldsymbol{x}) = 0.$$

(iv) Suppose that $\bar{y}(x) \neq x$. Then show that x is not an optimal solution to problem (P).