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An English Translation:

Basic Mathematics 1

1

Let {a.} be a sequence of real numbers defined by

(1.1:\/_6_, &n+1:\f6+an (n=1,2,)
Answer the following questions.

(i) Show that the sequence {a,} is bounded from above.

(ii) Show that the sequence {a,} is monotonically increasing as n increases.



An English Translation:

Data Structures and Algorithms

2

Let V = {v; = (as,b;) | i =1,2,...,n} be a set of n (= 2) pairs of integers. The distance

d(v;, vi) between two pairs v, v € V is defined to be |a; — ax| + [b; — by). Answer the

following questions.

(i) Prove that, for two pairs v;,v; € V/, it holds that d{v;, v¢) = max{|(a; +b;) — (ax +
bi)s [(=a; + b;) — (—ax + i)}

(if) Give an O(n)-time algorithm for computing max,, y,ev d(v;, vg).

(iif} Prove that, for two pairs v, vy € V, if there are integers L 2 1, h and £ such that
la; —hL| £ L, |ap — AL} £ L, |b; — €L| £ L and |by — £L| £ L, then it holds that
d(vj,ve) < 4AL.

(iv) Give an O(n logn)-time algorithm that, for a given integer I = 1, tests whether V
contains pairs v; and vy (j # k) such that d(v;, vg) < 4L or not.



An English Translation:

Linear Programming

3

Let f : R™ — R be a continuously differentiable convex function. Moreover, let V f{x) be
the gradient of f at @ € R™, which is defined by

o= (42 42

where the superscript T denotes transposition of a vector.

Consider the following linear programming problem P.

P: Minimize Vf(z)'«
subject to A(Z + x) £ b,

where A is an m x n constant matrix, b is an m-dimensional constant vector, & is an
n-dimensional constant vector, and # is an n-dimensional vector of variables. Suppose
that P has an optimal solution.

Answer the following questions.
(i) Show that f(Z + d) = f(Z) for any d € R™ such that Vf(z)'d = 0.
(i) Write out the dual problem of problem P.

(iii) Suppose that AZ 2 b. Then show that f(z) = f(&) for any 2 € R™ such that
Az = b.



An English Translation:

Linear Control Theory

4

Figure 1 shows a control system with the plant P(s), the controller C(s), the reference

input r, the error e, and the observation y. Let

s+ +ts+1
st+ 283+ 452 4254+ 17

P(s) =
and answer the following questions.

(i) Determine the stability of P(s) and find all the zeros of P(s).

(ii) Find a stable transfer function Q{s)(# £P(s)) that has the same gain diagram as
P(s).

(iii) Determine whether there exists C'(s) such that e(t) converges to 0 as £ — oo for an

arbitrary step input r(t). The derivation process should be shown.

(iv) Determine whether there exists C(s) such that |e(t)] < 0.9 for ¢ sufficiently large
for an arbitrary sinusoidal input r(¢) with the amplitude 1. The derivation pr'ocess

should be shown.

Figure 1: Control system



An English Translation:

Basic Mechanics

5

Consider the planer motion of a particle with the mass m subject to a central force.
Let (z(t), y(t)) be the position and let {(r(t), ¢(t)) be the polar coordinates such that
z=rcos¢g,y =rsing and r = /2?2 + y*. Let the center of the force be the origin of the

coordinate system. Answer the following questions.

dr d
(i) Write the velocity (EZE’ d_?;f,) in terms of the polar coordinates (r, ¢).
i oty . d*r dy\ | _
(i) Write the acceleration T g ) terms of the polar coordinates (r, ¢).

deg . .
(iii) Show that rgd—f is a constant of motion.

d
(iv) Let b = TQE. Suppose that the central force is an attractive force of the magnitude
E%& with a constant y{>> 0). Obtain the mechanical energy F and find the condition
T
of E for the motion to be bounded for 0 < t < co. Here E is determined such that

the effective potential energy UV = E — K satisfies the relation I/ — 0 as r — oo,

where K is the kinetic energy.



An English Translation:

Basic Mathematics I1

6

Let A = (a;;) be an n X n real symmetric matrix. Let the quadratic form =T Az be

positive, where x is any nonzero n-dimensional vector and x' is the transpose of x.

Answer the following questions.

(1) Show that the diagonal elements a; of the matrix A are all positive.
(ii) Show that the eigenvalues A; of the matrix A are all positive.
(iii) Show that the matrix A is nonsingular.

(iv) Let n 2 3. Let A, be a r x 7 (1 < r < n) real symmetric matrix defined by
extracting the #;th, %9th, ..., i.th rows and the iith, #th, ..., i,th columns

(154 <dy <+« <4, S n) from the n x n matrix A. For example,

Ay = Qiyiy  Giygy
aizh a"iz'iz
for 1 = 2. Show that the quadratic form x| A,x, is positive for any nonzero r-

dimensional vector =,.

(v) The matrix B' B = (b;;) is real symmetric for any n x n (n = 2) real matrix B.
Suppose that the diagonal elements b; of BT B are all positive. Is the quadratic

form &' BT Bz positive for such B and for any nonzero n-dimensional vector z?

Give a reason for the answer.
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An English Translation:

Applied Mathematics

1

Let » and a > 0 be a positive integer and a real number, respectively, and consider a C®

function f(z) defined on the infinite interval (—oo, 00) and satisfying

lim |z|*f(z) =1.

|| = doc
Let k£ < n be a positive integer. Write the Fourier transform for the kth-order derivative
F# () of f(z) as
F 1 / * (k) iz g R
= — r)e” % dz, €R,

and let fo(¢) denote the Fourier transform of f(z). Moreover, suppose that liI:El ||+ £ ()
TFTO0

exists for any positive integer j < n. Answer the following questions.

(i) Show that a necessary and sufficient condition for f{z) to be integrable on the

infinite interval (—oo, 0o}, that is, for the improper integral

IR

to exist is a > 1.

k-1
. : atk| p(E) (N[ — ,
(ii) Show that wgrfw |2 F*] 9 ()| jl:[o(a + 7).

(iii) Show that f*)(z) is integrable on the infinite interval (—co, c0) when @ > 1.
(iv) Express f(€) in terms of fo(£) when a > 1.

(v) Show that fi(£) is of class C*™ when a > £ + 1 for a positive integer £.



An English Translation:

Graph Theory

2

Let G = (V, E) denote a simple undirected graph with a vertex set V and an edge set

E, and let each edge ¢ € E be weighted by a real number w(e). A cut-set of G is a
minimal subset F' of E such that (V, E — F) is disconnected. Prove or disprove each of

the following propositions in (i)-(iv), giving a proof or a counterexample.

(i) Let K be a cut-set in G, and let a be an edge in K which has the minimum weight.

Then any minimum spanning tree of G contains edge a.

(ii) Let A be a cut-set in G, and let a be an edge in K which has the minimum weight.

Then G has a minimum spanning tree which contains edge a.

(iii) Let K be a cut-set in G, and let b be an edge in K which has the maximum weight.

Then G has a minimum spanning tree which does not contain edge b.

(iv) Let C be a cycle in G, and let a be an edge in C' which has the minimum weight.

Then G has a minimum spanning tree which contains edge a.



An English Translation:

Operations Research

3

Let f : R® — R be a twice continuously differentiable function, and let @ be an n-

dimensional nonzero vector.

Consider the following nonlinear programming problem:

P: Minimize f(x)

T

subject to a'x =0,

where the superscript ' denotes transposition of a vector. Let z* be a global optimal

solution to problem P.

Moreover consider the following nonlinear programming problem:

P(k): Minimize fip(x)
subject to (z —z*) (z —x*) £ 1,

where k is a nonnegative integer and f; : R* — R is the function defined by
k T )2 1 *\ T *
fu(x) = f(@) + 5(a'2) + 5@ —2") (& — 2°).

Let 2 be a global optimal solution to problem P(k). Suppose that lim, .. ¥ = & and
limy o0 k{a"@*) = A

Answer the following questions.
(i) Show that fi(z*) £ f(x*) for any nonnegative integer k.
(ii) Show that @'® =0 and T = =*.
(iii) Write out Karush-Kuhn-Tucker conditions for problem P(k).
(iv) Show that V fi(z*) = 0 for all k sufficiently large.

(v) Show that Vf(z*) + da = 0.



An English Translation:

Modern Control Theory

4

Let a linear dynamical system be given by the state equation

dz
EZ—Ax+Bu, y = Cz,

where z(t) € R® is the state vector, u(t) € R is the control input, and y(t) € R is the

observation output. Moreover, let
10 1
=l o=[f -t
where a is a real number. - Answer the following questions.
(i) Determine the controllability and the observability of the system.

In what follows, let a = 1.

(i) Obtain the state equation of a full state observer in such a way that the error

dynamics has the eigenvalues {—1, —2}.
(iii) Let &(¢) € R? be the state of the observer constructed in (i), and define
u=[-3 —3|£+v

" to close the feedback loop, where v(t) € R is an exogenous input. Calculate the

eigenvalues of the closed loop system and cbtain the transfer function from v to y.



An English Translation:

Physical Statistics

5

Let X be a real-valued random variable over the infinite interval (—o0, c0) obeying the

Cauchy distribution with the scale parameter (> 0) whose density function is given by

py(z) = m

(i)

¥ . Answer the following questions.

, 1
Show that a random variable ¥ given by the transformation ¥ = d also obeys

the Cauchy distribution with the scale parameter ' = —.
Y

1
Show that a random variable Z given by the transformation 7 = % (X — E) also

1 1
obeys the Cauchy distribution with the scale parameter v = 3 ('}f + ;)

Show that the probability density function p,(z) of a random variable X, (n > 0)

1 1
given by the recursion relation X, = 5 (Xn — X_) , Xy = X converges to the
i 1
density function of the standard Cauchy distribution p;(z) = e as n — oo,

for any «y > 0.



An English Translation:

Mathematics for Dynamical Systems

6

Consider the differential equation

dz 2 2
'&?__‘T +Ju':l

which depends on the parameter x4 > 0. Let ¢;(zg; 1) denote the solution satisfying the

initial condition z{0) = x4 € R at t = 0. Answer the following questions.
(i) Obtain the solution y:(xzo; pt).

a
(i) Show that g == a—%(a:o; 1) is a solution to the differential equation
Lo

d
d—‘? = —2p4(zo; 1)y

for any g > 0 and 2y € R.

(ili) Obtain a solution to the differential equation

dy

ar = —2¢:(0; 1)y

satisfying the initial condition y{(0) =y € R at ¢ = 0.

(iv) Obtain a solution to the differential equation

dy
i —2¢,(0; 1)y + 2

satisfying the initial condition y{(0) =y € R at ¢ = 0.



