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An English Translation:

Linear Programming

3

Let f : R™ — R be a continuously differentiable convex function. Moreover, let V f{x) be
the gradient of f at @ € R™, which is defined by

o= (42 42

where the superscript T denotes transposition of a vector.

Consider the following linear programming problem P.

P: Minimize Vf(z)'«
subject to A(Z + x) £ b,

where A is an m x n constant matrix, b is an m-dimensional constant vector, & is an
n-dimensional constant vector, and # is an n-dimensional vector of variables. Suppose
that P has an optimal solution.

Answer the following questions.
(i) Show that f(Z + d) = f(Z) for any d € R™ such that Vf(z)'d = 0.
(i) Write out the dual problem of problem P.

(iii) Suppose that AZ 2 b. Then show that f(z) = f(&) for any 2 € R™ such that
Az = b.



