線形計画

3

関数 $f:\mathbb{R}^n \to \mathbb{R}$ を連続的微分可能な凸関数とする. さらに, $\nabla f(x)$ を次式で定義される関数 $f \circ x \in \mathbb{R}^n$ における勾配とする.

$$\nabla f(\boldsymbol{x}) = \left(\frac{\partial f(\boldsymbol{x})}{\partial x_1}, \dots, \frac{\partial f(\boldsymbol{x})}{\partial x_n}\right)^{\top}$$

ただし、「は転置記号を表す.

次の線形計画問題 P を考える.

P: Minimize
$$\nabla f(\bar{\boldsymbol{x}})^{\top} \boldsymbol{x}$$

subject to $\boldsymbol{A}(\bar{\boldsymbol{x}} + \boldsymbol{x}) \leq \boldsymbol{b}$

ただし、Aは $m \times n$ 定数行列、bはm次元定数ベクトル、 \bar{x} はn次元定数ベクトル、xはn次元変数ベクトルである。問題 P は最適解を持つとする。

以下の問いに答えよ.

- (i) $\nabla f(\bar{x})^{\top} d \ge 0$ である任意の $d \in \mathbb{R}^n$ に対して $f(\bar{x} + d) \ge f(\bar{x})$ となることを示せ.
- (ii) 問題 P の双対問題を書け.
- (iii) $A\bar{x} \ge b$ とする. このとき, $Az \le b$ である任意の $z \in \mathbb{R}^n$ に対して, $f(z) \ge f(\bar{x})$ であることを示せ.

An English Translation:

Linear Programming

3

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable convex function. Moreover, let $\nabla f(\boldsymbol{x})$ be the gradient of f at $\boldsymbol{x} \in \mathbb{R}^n$, which is defined by

$$\nabla f(\boldsymbol{x}) = \left(\frac{\partial f(\boldsymbol{x})}{\partial x_1}, \dots, \frac{\partial f(\boldsymbol{x})}{\partial x_n}\right)^{\mathsf{T}},$$

where the superscript \top denotes transposition of a vector.

Consider the following linear programming problem P.

$$\begin{aligned} \text{P:} & \text{ Minimize } & \nabla f(\bar{\boldsymbol{x}})^{\top} \boldsymbol{x} \\ & \text{ subject to } & \boldsymbol{A}(\bar{\boldsymbol{x}} + \boldsymbol{x}) \leqq \boldsymbol{b}, \end{aligned}$$

where \boldsymbol{A} is an $m \times n$ constant matrix, \boldsymbol{b} is an m-dimensional constant vector, $\bar{\boldsymbol{x}}$ is an n-dimensional constant vector, and \boldsymbol{x} is an n-dimensional vector of variables. Suppose that P has an optimal solution.

Answer the following questions.

- (i) Show that $f(\bar{\boldsymbol{x}} + \boldsymbol{d}) \ge f(\bar{\boldsymbol{x}})$ for any $\boldsymbol{d} \in \mathbb{R}^n$ such that $\nabla f(\bar{\boldsymbol{x}})^{\top} \boldsymbol{d} \ge 0$.
- (ii) Write out the dual problem of problem P.
- (iii) Suppose that $A\bar{x} \geq b$. Then show that $f(z) \geq f(\bar{x})$ for any $z \in \mathbb{R}^n$ such that $Az \leq b$.