基礎力学

5

平面内で中心力を受けて運動している質量 m の質点の位置を (x(t),y(t)), その極座標表示を $(r(t),\phi(t))$ とする. 但し、力の中心を座標原点とし、 $x=r\cos\phi$, $y=r\sin\phi$, $r=\sqrt{x^2+y^2}$ を満足する. 以下の問いに答えよ.

- (i) 速度 $\left(\frac{dx}{dt}, \frac{dy}{dt}\right)$ を極座標表示 (r, ϕ) で表せ.
- (ii) 加速度 $\left(\frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}\right)$ を極座標表示 (r, ϕ) で表せ.
- (iii) $r^2 \frac{d\phi}{dt}$ が時刻 t に依らず、一定値であることを示せ.
- (iv) $h=r^2\frac{d\phi}{dt}$ とおく. 中心力が $\frac{m\mu}{r^2}$ の大きさの引力 (μ は正の定数) である時, 力学的エネルギー E を求め, 運動が $0 < t < \infty$ で有界であるための力学的エネルギー E の取りうる範囲を求めよ. 但し, K を運動エネルギーとし, 実効ポテンシャルエネルギー U=E-Kが, $r \to \infty$ の時 $U \to 0$ を満足するように E を規準化する.

An English Translation:

Basic Mechanics

5

Consider the planer motion of a particle with the mass m subject to a central force. Let (x(t), y(t)) be the position and let $(r(t), \phi(t))$ be the polar coordinates such that $x = r \cos \phi, y = r \sin \phi$ and $r = \sqrt{x^2 + y^2}$. Let the center of the force be the origin of the coordinate system. Answer the following questions.

- (i) Write the velocity $\left(\frac{dx}{dt}, \frac{dy}{dt}\right)$ in terms of the polar coordinates (r, ϕ) .
- (ii) Write the acceleration $\left(\frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}\right)$ in terms of the polar coordinates (r, ϕ) .
- (iii) Show that $r^2 \frac{d\phi}{dt}$ is a constant of motion.
- (iv) Let $h = r^2 \frac{d\phi}{dt}$. Suppose that the central force is an attractive force of the magnitude $\frac{m\mu}{r^2}$ with a constant $\mu(>0)$. Obtain the mechanical energy E and find the condition of E for the motion to be bounded for $0 < t < \infty$. Here E is determined such that the effective potential energy U = E K satisfies the relation $U \to 0$ as $r \to \infty$, where K is the kinetic energy.