現代制御論

4

状態方程式

$$\frac{dx}{dt} = Ax + Bu, \quad y = Cx$$

で線形システムが表されている.ただし $x(t)\in\mathbb{R}^2$ は状態, $u(t)\in\mathbb{R}$ は制御入力, $y(t)\in\mathbb{R}$ は観測出力である.また

$$A = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

とする. ただし a は実数である. このとき以下の問いに答えよ.

(i) このシステムの可制御性と可観測性を判定せよ.

以下では、a=1 として解答せよ.

- (ii) 誤差ダイナミクスの固有値が $\{-1, -2\}$ となるように全状態オブザーバを構成してその状態方程式を示せ.
- (iii) (ii) で与えたオブザーバの状態を $\hat{x}(t) \in \mathbb{R}^2$ とするとき,

$$u = \begin{bmatrix} -3 & -3 \end{bmatrix} \hat{x} + v$$

としてフィードバックを閉じる。ただし $v(t) \in \mathbb{R}$ は外生入力である。このとき閉ループ系の固有値ならびに v から y への伝達関数を求めよ。

An English Translation:

Modern Control Theory

4

Let a linear dynamical system be given by the state equation

$$\frac{dx}{dt} = Ax + Bu, \quad y = Cx,$$

where $x(t) \in \mathbb{R}^2$ is the state vector, $u(t) \in \mathbb{R}$ is the control input, and $y(t) \in \mathbb{R}$ is the observation output. Moreover, let

$$A = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 \end{bmatrix},$$

where a is a real number. Answer the following questions.

(i) Determine the controllability and the observability of the system.

In what follows, let a = 1.

- (ii) Obtain the state equation of a full state observer in such a way that the error dynamics has the eigenvalues $\{-1, -2\}$.
- (iii) Let $\hat{x}(t) \in \mathbb{R}^2$ be the state of the observer constructed in (ii), and define

$$u = \begin{bmatrix} -3 & -3 \end{bmatrix} \hat{x} + v$$

to close the feedback loop, where $v(t) \in \mathbb{R}$ is an exogenous input. Calculate the eigenvalues of the closed loop system and obtain the transfer function from v to y.