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An English Translation:

Basic Mathematics 1

1

Let a > 0 be a real number. Consider a function f(z) = e® — az?® defined on the semi-

infinite interval [0,00). Assume that f(z) is strictly increasing. Answer the following

questions.
i) Obtain the range of values of the constant a such that f(z) is strictly increasing.
\ g

(ii) Let f~1(y) be the inverse function of the function y = f(z). Obtain the value of
f(a)
the definite integral F(a) = / FHy)dy.
1

(iii) Let b be a real number. Assume that in the range obtained in (i) there exists a
unique value of a satisfying F'(a) = b. Here F(a) is obtained in (ii). Obtain the

range of values of the constant b.
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An English Translation:

Data Structures and Algorithms

2

For a given integer k 2 2, let Ay, A,, ..., Ay be given arrays, where each array A; contains

n; = 1 integers sorted in an ascending order. Let n = ny +ng+- - +ng, and'aissume that

all n integers contained in the k arrays are distinct. Answer the following questions.

(i) Prove that sorting in an ascending order the n; + ny integers in the arrays A; and

Aj can be executed in O(ng + n2) time.

(ii) Prove that sorting in an ascending order the n integers in the arrays A, As, ..., Ay

can be executed in O(nlogk) time.

(iii) Prove that selecting the k smallest integers out, of the n integers in the arrays Aj,

Ag, ..., Ay can be executed in O(klogk) time.

(iv) Assume that n; = 1, and that n; = 2n;; for ¢ = 2,3,...,k. Under this assump-
tion, answer whether sorting in an ascending order the n integers in the arrays Aj,

Aa, ..., A, can be executed in O(n) time. Give reasons for your answer.
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An English Translation:

Linear Programming

Let sets X SR x R™, Y S R™ and Z & R" be defined by

m .
fU:Zyzaz, ygo}a
i=1
m
w:Zyiaz, yZO},

=1

x = femem

Y = {zeR*|(z,y)e X} = {w‘e R™

Z = {zeR|(@)T2<1 (G=1,...,m)},

respectively. Here, T denotes transposition, a’ (i = 1,...,m) are n-dimensional nonzero
vectors, and ¥y = (Y1, - -, Ym) -

Answer the following questions.

(i) Show that the sets X and Y are convex.

(i) Let = € Y be a nonzero vector. Show that there exists z € Z such that 2Tz > 0.

Hint: Consider the maximization of = z.

(iil) Let € Y. Show that there exist y € R™ and z € Z such that the following
conditions (C1) and (C2) hold.

(C1) (a@*)Tz =1 for all i such that y; > 0;

(02) (w7y) €X.
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An English Translation:

Linear Control Theory

[]

Figure 1 shows a control system with the plant P(s) and the controller C(s) given by

—2s+1 1

P T e p—
(5) 252 4+ 55+ 2’ Cls) as+0b’

where a and b are real constants satisfying (a, b) # (0,0). Moreover, r is a reference input,

e is an error, and y is an output. Answer the following questions.

(i) Let (a,b) = (0,2). Calculate the output when the reference input is the unit step

function.
(ii) Let a = 0. Find all the constant b for which the control system is stable.
(iii) Let a = 0. Find all the constant b which makes the phase margin infinity.

(iv) Find all the constants (a, b) for which the steady-state error for the unit step function

is 0.
ﬂf_—» C(s) +—» P(s) >

Figure 1: Control System
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An English Translation:

Basic Mechanics

-0

As shown in the figure, particle A of mass M is constrained to move on a smooth horizontal

plane. Another particle B of mass m is constrained to move smoothly in a vertical line.
The two particles are connected by a massless and unstretchable string of length £, which
passes through a small hole O in the plane and never slackens. Let g be the magnitude

of the gravitational acceleration. Answer the following questions.

(i) Find the Lagrangian of the system with the use of r and ¢, which are, respectively,
the radial and angular coordinates at the position of A as shown in the figure and

derive the equations of motion.

(ii) Obtain the angular velocity when A executes a uniform circular motion with radius

r =19, where 0 < 19 < £.

(ili) Find the frequency and amplitude of the vibration along OA after a positive in-
—
finitesimal velocity v along OA is added to A in the state of (ii).
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An English T ra,nsiation:

Basic Mathematics II

6

Let Mat(n) be the set of n x n complex matrices. For A € Mat(n), define a linear map

fa : Mat(n) — Mat(n)

by .
fa(X)=AX — XA.

Assume that A has n distinct eigenvalues. Let O be the n X n zero matrix. Answer the

following' questions.

(i.) Let n = 2 and a € C. Assume that X € Mat(2) satisfies det(fa(X)) = a. Write

the eigenvalues of f4(X) in terms of a.

(ii) Assume that X € Mat(n) satisfies f4(X) = O. Show that A and X are diagonaliz-

able by a common non-singular matrix.
(ili) Assume that X,Y € Mat(n) satisfy f4(X) = fa(Y) = O. Show the equality

XY =YX.

(iv) Assume that A is a diagonal matrix. Find the dimension dim f4(Mat(n)) of the

image of the linear map fj4.
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An English Translation:

Applied Mathematics

|

Let a be a positive real number. Let H be the upper half plane defined by H = {z =
z+yilz, y€R, y>0} Consider the function

_z+1—a

f(2) P z € H.

Answer the following questions.
(i) Show that f(z) € H for any z € H.
(ii) Show that there uniquely exists z € H such that w = f(z) for any w € H.

(iii) Find the image of the half circle |2] = 1 (2 € H) by the linear fractional transfor-
mation w = f(z).

(iv) Investigate the points z € H such that f(z) = z and find all of them if they exist.
(v) Let us define a sequence of functions f,(z) (n=1,2,...) by
f1(Z)=f(z), fn(Z)Zf(fn_l(Z)) (7’L=2,3,...)

for any z € H. Find the positive number a such that f,(2) = fi(z) for any z € H.
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An English Translation:

Graph Theory

2

Let G = (V, E) denote a simple, strongly connected digraph with a vertex set V' and

an edge set E, and let N = [G,w] denote a network obtained from G by assigning a
nonnegative real value w(e) to each edge e € F as its weight. A directed edge frbm a
vertex u to a vertex v is denoted by (u,v) and its weight is written as w(u,v). Define the
distance dist(u, v) from a vertex u to a vertex v to.be the minimum summation of weights

of edges in a simple path from u to v in N. Answer the following questions.

(i) For a subset S & V and a vertex s € S, let (u*,v*) be an edge that minimizes
dist(s,u) + w(w,v) among all edges (u,v) directed from S to V' — S. Prove that
dist(s, v*) = dist(s, u*) + w(u*,v*). |

(ii) Show that Dijkstra’s algorithm can be implemented to run in O(|E]| log [V]) time

for a given start vertex s € V in N.

(iii) When an edge with a negative weight is added to N, Dijkstra’s algorithm may fail
to output the correct distance. Construct such an example with 3 < |V| £ 4, and

explain how Dijkstra’s algorithm fails to compute the correct distance.
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An English Translation:

Operat.ions Research

Let A beann x n symmetric positive definite matrix. Moreover, let functions f :

R“xR”—%]R,g:R"xR”——)Randh:-]R"xR”——)]Rbedeﬁnedby

flx,z) = —a'x+2"Az, g(z,2)= z'x+z2z Az + 2 2,

hay) = z'z+y'y,

respectively. Here T denotes transposition. »
Consider the following nonlinear programming problems with a parameter z € R™.

P1(z): Maximize f(z,z)  P2(2z): Minimize g(,z2)
subject to 'z < 1, , subject to x € R™,

| P3(z) : ‘Minimize h(z,y)
subject to x4+ Yy =z, , .
where the decision variables of P1(z), P2(2) and P3(z) are z € R", z € R™ and (=, y) €
R™ x R™, respecfively.
For any parameter vector z € R, problems P1(z), P2(z) and P3(z) have unique
solutions. Let x'(z), #?(z) and (w3(z),y3(z)) be the solutions of P1(z), P2(z) and
P3(z), respectively. ' ‘ '

Answer the following questions.

(i) Suppose that 2T AT Az < 4. Obtain the solution «*(2) of P1(z) by using Karush-
Kuhn-Tucker conditions for P1(z). (Note that P1(2) is a maximization problem.)

(ii) Obtain the solution (x*(z),y3(z)) of P3(z) by using Karush-Kuhn-Tucker condi-
tions for P3(z). '

(iii) Prove or disprove the following propositions, giving a proof or a counterexample.

(a) Let p: R™ — R be defined by p(z) = f(z'(z
(b) Let g : R® — R be defined by ¢(z) = g(z?*(z
(c) Let  : R® — R be defined by r(z) = h(z*(2),y%(2)). Then r is a convex

), z). Then p is'a convex function.
)

,Z). Then ¢ is a convex function.

function.



RRHER

4]
REEGER

%x(t) =.Ax(t) + Bu(t), y(t) = Cz(t)

K EDEZSNBEIUS AT LRELS, KL, o) e R KR, u(t) € R ZFIFA
H, y(t) eRREMHATH S, 7,

-1 1 0
a3 1) 5efomn 2
EL, TREBEZHODT. DT oMeicEBE & bIER &,

) u(t) =0DLE, V(z) =z Pz %V(x(t}) - ~z(t) Tz(t) & Wi T EEBENTT
3 P e R>? 02 HEE X, ‘ |

00

(i) u(®) =0, W) = [ oot & T5, COLE(0)a(0) S1DbETD
W((0) ORABERD X, |

(iii) J(u) = /oo (y(2)? +u(t)?) dt ZRAMET 5 u(t) 13, BIREkcRZAVTut) =
(-1 K]o(t) £RT 2 LHTEBDELL,

(1v) =(0) = [(1]] LT3, ZOLE, (i) O J) BBRMET B ult) Db ET, ot) BR

o &,



An English Translation:

Modern Control Theory

Consider a linear dynamical system given by the state equation

-C%x(t) = Az(t) + Bu(t), y(t) = C=z(¢)

where z(t) € R? is a state vector, u(t) € R is a control input, and y(t) € R is an

observation output. Let _
-1 1 0 .
A_[l | _2},3_[1],0_[1 2],
and T denotes transposition. Answer the following questions. Show the derivation process.

(i) Let u(t) = 0. Determine whether there ex1sts a symmetric positive definite matrix
P € R?*? such that V(z) = " Px satisfies —V(m(t)) —2(t) Tz(t).

oo

() Lot u(t) = 0 and W(z(0)) = / " 5(8)Tz(t)dt. Then, find the maximum value of
, N = =
W (z(0)) under the constraint z(0)Tz(0) £ 1. -

(iii) Determine whether u(¢) that minimizes J(u) = / (y(t)® +u(t)?) dt can be fepre—
sented as u(t) = [-1 k] z(t) by choosmg a suitable & € R.

(iv) Let z(0) = [(1)] . Find z(¢) under the control input u(t) that minimizes J(u) defined

in (iii).
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An English Translation:

Physical Statistics

[]

Let v be the speed of a particle in a classical ideal monoatomic gas in thermal equilibrium,
and let v,,v, and v,, respectively, denote the velocity components in the z,y and z
directions. Let us denote the probabilities of gas molecules with the velocity components
between v, and v, + dv,, v, and v, + dv,, and v, and v, + dv,, by f(v,)dv,, f(vy)dvy,
and f(v,)dv,, respectively. Let us assume that the probability of gas molecules having

the velocity components between v, and v, + dv,, v, and v, + dv,, and v, and v, + dv,,

simultaneously is given by

f(vz) f(vy) f(v,)dvdvo,dv, = g(vQ)dedvydvz,

where f and g are smooth functions and v = |/vZ + v2 + v2. Answer the following ques-

tions.

(i) Show that the following relation holds:

if/(vﬁ o Lf,(vy) . 1 f/(vz) g/(UQ)

20, f(ve)  2v, f(v,) 20, f(v.)  g(v?)’

(ii) Show that the following relations hold:

Flo) = [2eE pm) = [Semh pe) = |2

™ ™

where « is a positive constant.

(iii) Obtain the probability F'(v)dv of the speed being between v and v + dv.

(iv) Obtain the most probable speed vy such that the probability density F'(v) given in

(iii) has a maximum at the speed v = vy.

(v) Obtain the root mean square speed v.
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An English Translation:

Mathematics for Dynamical Systems

[]

Let n be a positive integer and let A(t) be an n X n matrix whose ij-component is given
by

1 (fori=j);
a;;(t) =<t (fori=j+1);
0 (otherwise).

Consider the n-dimensional system of differential equations

de 1
— = -A(t R".
dt t (e, @€
Here t > 0. Answer the following questions.
(i) Obtain a general solution when n = 1.

(ii) Obtain a general solution when n = 2.

(iii) Obtain a general solution when n is an arbitrary positive integer.



