アルゴリズム基礎

2

 $k \ge 2$ 個の配列 A_1, A_2, \ldots, A_k があり、各配列 A_i に $n_i \ge 1$ 個の整数が小さい順に貯えられている。ここで、 $n=n_1+n_2+\cdots+n_k$ とし、k 個の配列全体の中で貯えられている n 個の整数は全て異なるとする。以下の問いに答えよ。

- (i) 配列 A_1, A_2 内の $n_1 + n_2$ 個の整数を $O(n_1 + n_2)$ 時間で小さい順に整列できることを示せ.
- (ii) k 個の配列 A_1, A_2, \ldots, A_k 内の n 個の整数を $O(n \log k)$ 時間で小さい順に整列できることを示せ.
- (iii) k個の配列 A_1, A_2, \ldots, A_k 内のn個の整数の中で小さいものから k個の整数を $O(k \log k)$ 時間で選び出せることを示せ.
- (iv) いま, $n_1=1$ および 各 $i=2,3,\ldots,k$ に対し $n_i=2n_{i-1}$ が成り立っているとする. このとき, k 個の配列 A_1,A_2,\ldots,A_k 内の n 個の整数を O(n) 時間で小さい順に整列できるか, 理由とともに答えよ.

An English Translation:

Data Structures and Algorithms

2

For a given integer $k \geq 2$, let A_1, A_2, \ldots, A_k be given arrays, where each array A_i contains $n_i \geq 1$ integers sorted in an ascending order. Let $n = n_1 + n_2 + \cdots + n_k$, and assume that all n integers contained in the k arrays are distinct. Answer the following questions.

- (i) Prove that sorting in an ascending order the $n_1 + n_2$ integers in the arrays A_1 and A_2 can be executed in $O(n_1 + n_2)$ time.
- (ii) Prove that sorting in an ascending order the n integers in the arrays A_1, A_2, \ldots, A_k can be executed in $O(n \log k)$ time.
- (iii) Prove that selecting the k smallest integers out of the n integers in the arrays A_1 , A_2, \ldots, A_k can be executed in $O(k \log k)$ time.
- (iv) Assume that $n_1 = 1$, and that $n_i = 2n_{i-1}$ for i = 2, 3, ..., k. Under this assumption, answer whether sorting in an ascending order the n integers in the arrays A_1 , $A_2, ..., A_k$ can be executed in O(n) time. Give reasons for your answer.