G=(V,E) を節点集合 V,枝集合 E から成る単純強連結有向グラフ,N=[G,w] を G の 各枝 $e\in E$ に非負実数値の重み w(e) を与えて得られるネットワークとする.節点 u から節点 v への有向枝は (u,v) と書き,その枝重みは w(u,v) とも書く.節点 u から節点 v への距離 $\mathrm{dist}(u,v)$ を N における u から v への単純路上の枝重みの和の最小値と定める.以下の問いに答えよ.

- (i) ある部分集合 $S \subseteq V$ と節点 $s \in S$ に対して、S から V S へ向かう枝 (u,v) の中で $\mathrm{dist}(s,u) + w(u,v)$ の値を最小とする枝を (u^*,v^*) とする.このとき、 $\mathrm{dist}(s,v^*) = \mathrm{dist}(s,u^*) + w(u^*,v^*)$ が成り立つことを証明せよ.
- (ii) N 上で始点 $s \in V$ からのダイクストラ法が $O(|E| \log |V|)$ 時間で実装できることを示せ.
- (iii) N に負の枝重みを持つ枝を 1 本加えたとき,ダイクストラ法の出力する値は正しい 距離とならないことがある.そのような具体例を $3 \le |V| \le 4$ で作成し,ダイクストラ法が正しい距離を計算しない過程を説明せよ.

Graph Theory

2

Let G = (V, E) denote a simple, strongly connected digraph with a vertex set V and an edge set E, and let N = [G, w] denote a network obtained from G by assigning a nonnegative real value w(e) to each edge $e \in E$ as its weight. A directed edge from a vertex u to a vertex v is denoted by (u, v) and its weight is written as w(u, v). Define the distance dist(u, v) from a vertex v to be the minimum summation of weights of edges in a simple path from v to v in v. Answer the following questions.

- (i) For a subset $S \subseteq V$ and a vertex $s \in S$, let (u^*, v^*) be an edge that minimizes $\operatorname{dist}(s, u) + w(u, v)$ among all edges (u, v) directed from S to V S. Prove that $\operatorname{dist}(s, v^*) = \operatorname{dist}(s, u^*) + w(u^*, v^*)$.
- (ii) Show that Dijkstra's algorithm can be implemented to run in $O(|E| \log |V|)$ time for a given start vertex $s \in V$ in N.
- (iii) When an edge with a negative weight is added to N, Dijkstra's algorithm may fail to output the correct distance. Construct such an example with $3 \le |V| \le 4$, and explain how Dijkstra's algorithm fails to compute the correct distance.