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An English Translation:

Graph Theory

2

Let G = (V, E) denote a simple, strongly connected digraph with a vertex set V' and

an edge set E, and let N = [G,w] denote a network obtained from G by assigning a
nonnegative real value w(e) to each edge e € F as its weight. A directed edge frbm a
vertex u to a vertex v is denoted by (u,v) and its weight is written as w(u,v). Define the
distance dist(u, v) from a vertex u to a vertex v to.be the minimum summation of weights

of edges in a simple path from u to v in N. Answer the following questions.

(i) For a subset S & V and a vertex s € S, let (u*,v*) be an edge that minimizes
dist(s,u) + w(w,v) among all edges (u,v) directed from S to V' — S. Prove that
dist(s, v*) = dist(s, u*) + w(u*,v*). |

(ii) Show that Dijkstra’s algorithm can be implemented to run in O(|E]| log [V]) time

for a given start vertex s € V in N.

(iii) When an edge with a negative weight is added to N, Dijkstra’s algorithm may fail
to output the correct distance. Construct such an example with 3 < |V| £ 4, and

explain how Dijkstra’s algorithm fails to compute the correct distance.




