力学系数学

6

f(t), g(t), h(t) を \mathbb{R} 上の連続関数として,

$$A(t) = \begin{pmatrix} f(t) & 0 \\ g(t) & h(t) \end{pmatrix}$$

とおき、ℝ上において2元連立線形微分方程式

$$\frac{dx}{dt} = A(t)x, \quad x \in \mathbb{R}^2$$
 (1)

を考える. Iを2次単位行列,

$$F(t) = \int_0^t f(s)ds, \quad G(t) = \int_0^t g(s)ds, \quad H(t) = \int_0^t h(s)ds$$

として,以下の問いに答えよ. ただし, $t \neq 0$ のとき $F(t) \neq H(t)$ が成立するものとする.

- (i) $\Phi(0)=I$ を満たす式 (1) の基本行列 $\Phi(t)$ を求めよ.ここで,基本行列 $\Phi(t)$ とは,正 則かつ $\frac{d}{dt}\Phi(t)=A(t)\Phi(t)$ を満たす 2 次正方行列のことをいう.
- (ii) $t \neq 0$ のとき,行列 $\Psi(t) = \begin{pmatrix} F(t) & 0 \\ G(t) & H(t) \end{pmatrix}$ の対角化を行って,指数関数 $\exp \Psi(t)$ を求めよ.
- (iii) $k \in \mathbb{R}$ をある定数として \mathbb{R} 上で G(t) = k(F(t) H(t)) が成立するとき,(ii) で求めた指数関数 $\exp \Psi(t)$ が式 (1) の基本行列となることを示せ.
- (iv) (i) と (ii) を用いて、指数関数 $\exp \Psi(t)$ が式 (1) の基本行列とならない f(t),g(t),h(t) の例をあげよ.

An English Translation:

Mathematics for Dynamical Systems

6

Let f(t), g(t) and h(t) be continuous functions on \mathbb{R} and let

$$A(t) = \begin{pmatrix} f(t) & 0 \\ g(t) & h(t) \end{pmatrix}.$$

Consider the two-dimensional linear system of differential equations

$$\frac{d\mathbf{x}}{dt} = A(t)\mathbf{x}, \quad \mathbf{x} \in \mathbb{R}^2, \tag{1}$$

on \mathbb{R} . Let I be the 2×2 identity matrix, and let

$$F(t) = \int_0^t f(s)ds$$
, $G(t) = \int_0^t g(s)ds$, $H(t) = \int_0^t h(s)ds$.

Assume that $F(t) \neq H(t)$ for $t \neq 0$. Answer the following questions.

- (i) Obtain the fundamental matrix to equation (1) satisfying $\Phi(0) = I$. Here a 2×2 matrix $\Phi(t)$ is called a fundamental matrix if it is nonsingular and satisfies $\frac{d}{dt}\Phi(t) = A(t)\Phi(t)$.
- (ii) When $t \neq 0$, obtain the exponential function $\exp \Psi(t)$ of $\Psi(t) = \begin{pmatrix} F(t) & 0 \\ G(t) & H(t) \end{pmatrix}$ by diagonalizing $\Psi(t)$.
- (iii) Assume that G(t) = k(F(t) H(t)) on \mathbb{R} for some constant $k \in \mathbb{R}$. Show that the exponential function $\exp \Psi(t)$ obtained in (ii) becomes a fundamental matrix to equation (1).
- (iv) Give an example of f(t), g(t) and h(t) such that $\exp \Psi(t)$ is not a fundamental matrix to equation (1), using (i) and (ii).