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An English Translation:

Mathematics for Dynamical Systems
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Let f(t), g(t) and h(t) be continuous functions on R and let

Alt) = (g”é;? h?t)) |

Consider the two-dimensional linear system of differential equations
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on R. Let I be the 2 x 2 identity matrix, and let

F(t) = /0 ‘Heds, G = /0 “g(s)ds, H(t) = /0 h(s)ds.

Assume that F(t) # H(t) for t # 0. Answer the following questions.

(i) Obtain the fundamental matrix to equation (1) satisfying ®(0) = I. Here a 2 x 2

matrix ®(t) is called a fundamental matrix if it is nonsingular and satisfies —th(t) =

d

A(t)D(t).
“ | o F(t) 0
(i) When t # 0, obtain the exponential function exp ¥(t) of ¥(t) = G(t) H(

diagonalizing U (%).

t)) by

(iii) Assume that G(t) = k(F(¢t) — H(t)) on R for some constant £ € R. Show that

the exponential function exp ¥(t) obtained in (ii) becomes a fundamental matrix to

equation (1).

(iv) Give an example of f(t), g(t) and h(t) such that exp ¥(¢) is not a fundamental

matrix to equation (1), using (i) and (ii).




