グラフ理論

2

G=(V,E) を節点集合 V,枝集合 E から成る単純強連結有向グラフ,N=[G,w] を G の各枝 $e\in E$ に実数値の重み w(e) を与えて得られるネットワークとする.節点 u から節点 v への有向枝は (u,v) と書き,その枝重みは w(u,v) とも書く.節点 u から節点 v への距離 dist(u,v) を N における u から v への単純路上の枝重みの和の最小値と定める.枝重み和が負である有向閉路を負閉路と呼ぶ.以下の問いに答えよ.

(i) 次の条件を満たす節点の実数値重み p(v), $v \in V$ が存在するとき, N に負閉路が存在しないことを証明せよ.

 $w(u,v) + p(u) - p(v) \ge 0, \quad \forall (u,v) \in E.$

(ii) 次を満たす節点 $s \in V$ と枝 $(u,v) \in E$ の組が存在するとき,N に負閉路が存在することを証明せよ.

dist(s, u) + w(u, v) < dist(s, v).

(iii) 各枝の重みが非負であると仮定する.ある部分集合 $S\subseteq V$ と節点 $s\in S$ に対して,S から $V\setminus S$ へ向かう枝 $(u,v)\in E$ の中で $\mathrm{dist}(s,u)+w(u,v)$ の値を最小とする枝を (u^*,v^*) とする.このとき, $\mathrm{dist}(s,v^*)=\mathrm{dist}(s,u^*)+w(u^*,v^*)$ が成り立つことを証明せよ.

An English Translation:

Graph Theory

2

Let G = (V, E) denote a simple, strongly connected digraph with a vertex set V and an edge set E, and let N = [G, w] denote a network obtained from G by assigning a real value w(e) to each edge $e \in E$ as its weight. A directed edge from a vertex u to a vertex v is denoted by (u, v) and its weight is written as w(u, v). Define the distance dist(u, v) from a vertex v to be the minimum summation of weights of edges in a simple path from v to v in v. A directed cycle is called a negative cycle if the sum of edge weights in the cycle is negative. Answer the following questions.

(i) Prove that N has no negative cycle if there is a set of real weights p(v), $v \in V$ such that

$$w(u,v) + p(u) - p(v) \ge 0, \quad \forall (u,v) \in E.$$

- (ii) Prove that N has a negative cycle if there is a pair of a vertex $s \in V$ and an edge $(u, v) \in E$ such that $\operatorname{dist}(s, u) + w(u, v) < \operatorname{dist}(s, v)$.
- (iii) Assume that the weight of each edge is non-negative. For a subset $S \subseteq V$ and a vertex $s \in S$, let (u^*, v^*) be an edge that minimizes $\operatorname{dist}(s, u) + w(u, v)$ among all edges $(u, v) \in E$ directed from S to $V \setminus S$. Prove that $\operatorname{dist}(s, v^*) = \operatorname{dist}(s, u^*) + w(u^*, v^*)$.