基礎数学I

1

開区間 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上の関数 $y = \tan x$ の逆関数を $y = \arctan x$ と書く. $f(x) = \arctan x$ は \mathbb{R} 上の実解析的関数である. 以下の問いに答えよ.

(i) 自然数 $n \ge 1$ に対して,

$$(1+x^2)f^{(n+2)}(x) + 2(n+1)xf^{(n+1)}(x) + n(n+1)f^{(n)}(x) = 0$$

が成り立つことを示せ. ただし, $f^{(n)}(x)$ は f(x) の n 階導関数である.

- (ii) f(x) の x = 0 を中心としたテイラー展開を求めよ.
- (iii) (ii) で求めたテイラー展開の収束半径を求めよ.
- (iv) 次式を示せ.

$$\pi = \sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{2n-1}$$

Basic Mathematics I

1

Let $y = \arctan x$ denote the inverse function of $y = \tan x$ defined on the open interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. The function $f(x) = \arctan x$ is real analytic on \mathbb{R} . Answer the following questions.

(i) Show that for any integer $n \ge 1$,

$$(1+x^2)f^{(n+2)}(x) + 2(n+1)xf^{(n+1)}(x) + n(n+1)f^{(n)}(x) = 0,$$

where $f^{(n)}(x)$ is the *n*th derivative of f(x).

- (ii) Obtain the Taylor series for f(x) at x = 0.
- (iii) Find the convergence radius of the Taylor series obtained in (ii).
- (iv) Show that

$$\pi = \sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{2n-1}.$$

アルゴリズム基礎

 $\overline{2}$

G=(V,E) を点集合 V,枝集合 E から成る単純有向グラフとする。 R(u;G) を G において点 u から有向路で到達できる点の集合と定め, $\operatorname{dist}(u,v;G)$ を点 u から点 v へ至る G の 有向路の最短の長さとする。 $v \notin R(u;G)$ のときは $\operatorname{dist}(u,v;G) \triangleq |V|$ と定める。 有向グラフ G から有向枝 $e \in E$ を削除した有向グラフを G-e と記す。 s,t を V の二点とする。 G は隣接リストにより貯えられているとする。以下の問いに答えよ。

- (i) $t \in \mathbf{R}(s;G)$ と仮定する. 点 s から点 t へ至る有向路で最短のものを求める O(|V|+|E|) 時間アルゴリズムを与えよ.
- (ii) $\operatorname{dist}(s,t;G-e)>\operatorname{dist}(s,t;G)$ を満たす有向枝 $e\in E$ が存在するかどうかを判定する O(|V|+|E|) 時間アルゴリズムを与えよ.
- (iii) $\operatorname{dist}(s,t;G) = \operatorname{dist}(t,s;G) = 3 < \operatorname{dist}(s,t;G-e) = \operatorname{dist}(t,s;G-e)$ である二点 $s,t\in V$,有向枝 $e\in E$ をもつ有向グラフ G=(V,E) の例を作成せよ.

Data Structures and Algorithms

2

Let G = (V, E) be a simple directed graph with a vertex set V and an edge set E. Let R(u; G) denote the set of vertices reachable from a vertex u by a directed path in G and dist(u, v; G) denote the shortest length of a path from a vertex u to a vertex v in G, where we set $dist(u, v; G) \triangleq |V|$ if $v \notin R(u; G)$. Let G - e denote the directed graph obtained from G by removing a directed edge $e \in E$. Let s and t be two vertices in V. Assume that G is stored in adjacency lists. Answer the following questions.

- (i) Assume that $t \in R(s; G)$. Give an O(|V| + |E|)-time algorithm that computes a directed path with the shortest length from s to t.
- (ii) Give an O(|V| + |E|)-time algorithm that tests whether there exists a directed edge $e \in E$ such that $\operatorname{dist}(s, t; G e) > \operatorname{dist}(s, t; G)$.
- (iii) Construct an example of a directed graph G = (V, E) that contains two vertices $s, t \in V$ and a directed edge $e \in E$ such that $\operatorname{dist}(s, t; G) = \operatorname{dist}(t, s; G) = 3 < \operatorname{dist}(s, t; G e) = \operatorname{dist}(t, s; G e)$.

 ${m A}$ と ${m B}$ を $m \times n$ 行列とする. さらに ${m A}$ の第 (i,j) 成分を $A_{i,j} = -i-j$ $(i=1,\ldots,m,j=1,\ldots,n)$ とする.

以下のパラメータ $u \in \mathbb{R}^m$ をもつ線形計画問題 P(u) とパラメータ $v \in \mathbb{R}^n$ をもつ線形計画問題 Q(v) を考える.

$$\begin{aligned} \mathbf{P}(\boldsymbol{u}) &: & \mathbf{Minimize} & & \boldsymbol{u}^{\top} \boldsymbol{A} \boldsymbol{x} \\ && \text{subject to} & & \sum_{i=1}^{n} x_i \leqq 1 \\ && \boldsymbol{x} \geqq \boldsymbol{0} \end{aligned}$$

Q(
$$\boldsymbol{v}$$
): Minimize $\boldsymbol{v}^{\top} \boldsymbol{B}^{\top} \boldsymbol{y}$ subject to $\sum_{i=1}^{m} y_{i} \leq 1$ $\boldsymbol{y} \geq 0$

ただし、 $P(\boldsymbol{u})$ の決定変数は $\boldsymbol{x} = (x_1, x_2, \dots, x_n)^{\top} \in \mathbb{R}^n$ であり、 $Q(\boldsymbol{v})$ の決定変数は $\boldsymbol{y} = (y_1, y_2, \dots, y_m)^{\top} \in \mathbb{R}^m$ である。また、 $^{\top}$ は転置記号を表す。

問題 $P(\boldsymbol{u})$ のすべての最適解の集合を $S_P(\boldsymbol{u})$ とし、問題 $Q(\boldsymbol{v})$ のすべての最適解の集合を $S_Q(\boldsymbol{v})$ とする、さらに、 $X = \{(\boldsymbol{x}^*, \boldsymbol{y}^*) \in \mathbb{R}^n \times \mathbb{R}^m \mid \boldsymbol{x}^* \in S_P(\boldsymbol{y}^*), \ \boldsymbol{y}^* \in S_Q(\boldsymbol{x}^*)\}$ とする、以下の問いに答えよ、

- (i) 問題 P(u) の双対問題を書け.
- (ii) $\boldsymbol{u} = (u_1, u_2, \dots, u_m)^{\top}$ を $u_i \leq 0$ $(i = 1, \dots, m)$ であるベクトルとする. このとき, $\boldsymbol{0} \in S_{\mathbf{P}}(\boldsymbol{u})$ であることを示せ.
- (iii) $m{B} = -m{A}$ とする、このとき、すべての $(m{x}^*, m{y}^*) \in X$ に対して $(m{y}^*)^{ op} m{A} m{x}^* = 0$ となることを示せ、
- (iv) $u \in \mathbb{R}^m$ を $u \ge 0$ かつ $u \ne 0$ であるベクトルとする. このとき, $S_P(u)$ を求めよ.
- (v) B = A とする. このとき, X を求めよ.

Linear Programming

3

Let \boldsymbol{A} and \boldsymbol{B} be $m \times n$ matrices. Suppose that the (i,j)th entry of \boldsymbol{A} is given by $A_{i,j} = -i - j \ (i = 1, \dots, m, j = 1, \dots, n)$.

Consider the following linear programming problems P(u) and Q(v) with vectors of parameters $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, respectively.

$$\begin{aligned} \mathbf{P}(\boldsymbol{u}) &: & \text{Minimize} & & \boldsymbol{u}^{\top} \boldsymbol{A} \boldsymbol{x} \\ && \text{subject to} & & \sum_{i=1}^{n} x_i \leqq 1 \\ && \boldsymbol{x} \geqq \boldsymbol{0}, \end{aligned}$$

Q(
$$\boldsymbol{v}$$
): Minimize $\boldsymbol{v}^{\top} \boldsymbol{B}^{\top} \boldsymbol{y}$
subject to $\sum_{i=1}^{m} y_{i} \leq 1$
 $\boldsymbol{y} \geq \mathbf{0}$,

where the decision variables of $P(\boldsymbol{u})$ and $Q(\boldsymbol{v})$ are $\boldsymbol{x} = (x_1, x_2, \dots, x_n)^{\top} \in \mathbb{R}^n$ and $\boldsymbol{y} = (y_1, y_2, \dots, y_m)^{\top} \in \mathbb{R}^m$, respectively. Here the superscript $^{\top}$ denotes transposition.

Let $S_{P}(\boldsymbol{u})$ and $S_{Q}(\boldsymbol{v})$ denote the sets of all optimal solutions of problems $P(\boldsymbol{u})$ and $Q(\boldsymbol{v})$, respectively. Moreover, let $X = \{(\boldsymbol{x}^*, \boldsymbol{y}^*) \in \mathbb{R}^n \times \mathbb{R}^m \mid \boldsymbol{x}^* \in S_{P}(\boldsymbol{y}^*), \ \boldsymbol{y}^* \in S_{Q}(\boldsymbol{x}^*)\}$. Answer the following questions.

- (i) Write out a dual problem of problem P(u).
- (ii) Let $\mathbf{u} = (u_1, u_2, \dots, u_m)^{\top}$ be a vector such that $u_i \leq 0$ $(i = 1, \dots, m)$. Show that $\mathbf{0} \in S_{\mathbf{P}}(\mathbf{u})$.
- (iii) Suppose that $\mathbf{B} = -\mathbf{A}$. Then show that $(\mathbf{y}^*)^{\top} \mathbf{A} \mathbf{x}^* = 0$ for all $(\mathbf{x}^*, \mathbf{y}^*) \in X$.
- (iv) Let $u \in \mathbb{R}^m$ be a vector such that $u \geq 0$ and $u \neq 0$. Obtain $S_{\mathbf{P}}(u)$.
- (v) Suppose that $\mathbf{B} = \mathbf{A}$. Obtain X.

線形制御理論

4

図 1 はフィードバック制御系を示す.ここで P(s) は制御対象,k はフィードバックゲイン,r は参照入力,e は偏差,g は出力である.制御対象 P(s) は

$$P(s) = \frac{cs+1}{s^2 + as + b}$$

で与えられるとする. ただし $a>0,\,b>0$ ならびに c は実定数である. 以下の問いに答えよ.

- (i) フィードバック制御系を安定化するゲイン k の集合を求めよ.
- (ii) r を単位階段関数とする. 出力 y の定常値が存在するゲイン k の集合を求め、各 k に対する出力定常値を求めよ.
- (iii) r を単位階段関数とする. ゲイン k は出力 y の定常値が存在するように選ばれているとする. ある $t_0 > 0$ が存在して, $0 < t < t_0$ において y(t) が y の定常値と異符号になるような定数 c の集合を求めよ.
- (iv) ゲイン k はフィードバック制御系が安定になるように選ばれているとする. p を実定数として $r(t)=e^{pt}$ となる参照入力を加えるとき,出力 y が有界となる p の集合を求めよ.

図 1 フィードバック制御系

Linear Control Theory

4

A feedback control system is shown in Figure 1, where P(s) is a plant, k is a feedback gain, r is a reference input, e is an error, and y is an output. The plant P(s) is given by

$$P(s) = \frac{cs+1}{s^2 + as + b},$$

where $a>0,\,b>0,$ and c are real constants. Answer the following questions.

- (i) Find the set of the gain k for which the feedback control system is stable.
- (ii) Let the reference input r be the unit step signal. Find the set of the gain k for which the steady-state output exists. Moreover, calculate the steady-state output for each k in the set obtained in (ii).
- (iii) Let the reference input r be the unit step signal and the gain k be chosen in such a way that the steady-state output exists. Find the set of the constant c for which there exists $t_0 > 0$ such that y(t) and the steady-state output have opposite signs on $0 < t < t_0$.
- (iv) Suppose that the gain k is chosen in such a way that the feedback control system is stable. Let the reference input r be written as $r(t) = e^{pt}$, where p is a real constant. Find the set of p for which the output y is bounded.

Figure 1 Feedback control system

基礎力学

5

質量 M, 半径 R_S の密度一様な球 A の中心から r ($\geq R_S$) の距離にある質量 m の質点の運動を考える. 万有引力定数を G とする. 以下の問いに答えよ.

- (i) $r \ge R_S$ のときの球 A によって生じる万有引力のポテンシャルを計算せよ.
- (ii) 質点が球 A の表面上から速さ V_E で脱出可能 (無限遠点 $(r=\infty)$ に到達可能) とする. 速さ V_E の最小値を求めよ.
- (iii) (ii) の速度 V_E が光の速度 c で与えられるとする. そのときの球 A の半径 R_S を c, M を用いて求めよ.

Basic Mechanics

5

Consider the motion of a particle of mass m at a distance $r (\geqq R_S)$ from the center of a spherical body A with mass M of uniform density and radius R_S . Let Newton's gravitational constant be denoted by G. Answer the following questions.

- (i) Compute the gravitational potential at $r \geq R_S$ affected by the spherical body A.
- (ii) Obtain the minimum speed V_E such that the particle can be attained at $r = \infty$, where V_E is a speed at a point of the surface of the spherical body A.
- (iii) Consider that V_E obtained in (ii) is equal to the speed of light c. Obtain the radius R_S of the spherical body A in terms of c and M.

基礎数学II

6

A を次に定める $n \times n$ 行列とする.

$$A = \begin{pmatrix} -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1} & -a_n \\ 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & \ddots & 0 & 0 & 0 \\ \vdots & & \ddots & & & \vdots \\ 0 & 0 & & 1 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

また、p(x) を次に定めるxの多項式とする。

$$p(x) = \det(xI_n - A)$$

ここで, I_n は n 次単位行列を表す. $k=1,2,\ldots,n-1$ に対して, $n\times n$ 行列 A_k をブロック対角行列

$$A_k = \begin{pmatrix} I_{k-1} & 0_{k-1,2} & 0_{k-1,n-k-1} \\ 0_{2,k-1} & C_k & 0_{2,n-k-1} \\ 0_{n-k-1,k-1} & 0_{n-k-1,2} & I_{n-k-1} \end{pmatrix}$$

とする. ただし、 $0_{\ell,m}$ は $\ell \times m$ 零行列、 C_k は 2×2 行列

$$C_k = \left(\begin{array}{cc} -a_k & 1\\ 1 & 0 \end{array}\right)$$

を表す. $n \times n$ 行列 A_n を対角行列 $A_n = \operatorname{diag}(1, \ldots, 1, -a_n)$ とする. 以下の問いに答えよ.

- (i) 多項式 p(x) を、定数 a と非負整数 r による ax^r の形の項の和によって表わせ.
- (ii) $A = A_1 A_2 \cdots A_{n-1} A_n$ が成り立つことを示せ.
- (iii) |j-k| > 1 において、 $A_k A_j = A_j A_k$ が成り立つことを示せ.
- (iv) n を奇数とする. このとき,

$$p(x) = \det(xI_n - A_1A_3 \cdots A_n A_2A_4 \cdots A_{n-1})$$

が成り立つことを示せ.

(v) n を奇数とする. p(x)=0 の根は、 $n\times n$ の対称三重対角行列で定まる方程式

$$\det \begin{pmatrix} a_1 + x & -1 \\ -1 & 0 & x \\ & x & a_3 + a_2 x & -1 \\ & & -1 & 0 & \ddots \\ & & \ddots & \ddots & x \\ & & x & a_n + a_{n-1} x \end{pmatrix} = 0$$

の根と一致することを示せ.

Basic Mathematics II

6

Let A be an $n \times n$ matrix defined as

$$A = \begin{pmatrix} -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1} & -a_n \\ 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & \ddots & 0 & 0 & 0 \\ \vdots & & \ddots & & & \vdots \\ 0 & 0 & & 1 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \end{pmatrix},$$

and let p(x) be a polynomial in x defined as $p(x) = \det(xI_n - A)$, where I_n is the identity matrix of order n. For k = 1, 2, ..., n - 1, let us define the $n \times n$ matrix A_k by the block diagonal matrix

$$A_k = \begin{pmatrix} I_{k-1} & 0_{k-1,2} & 0_{k-1,n-k-1} \\ 0_{2,k-1} & C_k & 0_{2,n-k-1} \\ 0_{n-k-1,k-1} & 0_{n-k-1,2} & I_{n-k-1} \end{pmatrix},$$

where $0_{\ell,m}$ is the $\ell \times m$ zero matrix and C_k is the 2×2 matrix

$$C_k = \left(\begin{array}{cc} -a_k & 1\\ 1 & 0 \end{array}\right).$$

Define the $n \times n$ matrix A_n by the diagonal matrix $A_n = \text{diag}(1, \dots, 1, -a_n)$. Answer the following questions.

- (i) Express the polynomial p(x) as a sum of terms of the form ax^r , where a is a constant and r is a non-negative integer.
- (ii) Show that $A = A_1 A_2 \cdots A_{n-1} A_n$.
- (iii) Show that $A_k A_j = A_j A_k$ for |j k| > 1.
- (iv) Let n be an odd integer. Show that $p(x) = \det(xI_n A_1A_3 \cdots A_n A_2A_4 \cdots A_{n-1})$.
- (v) Let n be an odd integer. Show that the roots of p(x) = 0 coincide with the roots of the equation

$$\det \begin{pmatrix} a_1 + x & -1 & & & & & \\ -1 & 0 & x & & & & & \\ & x & a_3 + a_2 x & -1 & & & & \\ & & -1 & 0 & \ddots & & & \\ & & \ddots & \ddots & x & & \\ & & & x & a_n + a_{n-1} x \end{pmatrix} = 0,$$

determined by an $n \times n$ symmetric tridiagonal matrix.

応用数学

1

iを虚数単位とする. f(x)を実解析的関数で $f(x+2\pi)=f(x)$ を満たし,

$$D_{\xi} = \{ z = x + iy \in \mathbb{C} \mid x, y \in \mathbb{R}, |y| \le \xi \}$$

を含む開集合まで解析接続できるとする.ここで, ξ は正の定数である.このとき,f(x) はフーリエ級数展開可能で

$$f(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}, \qquad a_k = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-ikx} dx$$

が成り立つ. 以下の問いに答えよ.

(i) 複素平面上の点 $0, 2\pi, 2\pi + i\xi, i\xi$ をこの順で結んでできる長方形の経路に沿った周回 積分を考えることにより、任意の整数kに対し、

$$a_k = \frac{e^{k\xi}}{2\pi} \int_0^{2\pi} f(x+i\xi)e^{-ikx}dx$$

を示せ. また,

$$a_k = \frac{e^{-k\xi}}{2\pi} \int_0^{2\pi} f(x - i\xi)e^{-ikx} dx$$

を示せ.

- (ii) $L = \max\{|f(z)| \mid z \in D_{\xi}\}$ とする. 任意の整数 k に対し、 $a_k \leq Le^{-\xi|k|}$ を示せ.
- (iii) c > 1を定数とし,

$$f(x) = \frac{1}{\cos x - c}$$

とする. 任意の正の実数 $\eta<\log(c+\sqrt{c^2-1})$ に対し、ある M>0 が存在し、すべての整数 k に対し $a_k \leq Me^{-\eta|k|}$ が成り立つことを示せ.

Applied Mathematics

1

Let i denote the imaginary unit. Let f(x) be a real analytic function satisfying $f(x+2\pi) = f(x)$ and having an analytic continuation on an open set including

$$D_{\xi} = \{ z = x + iy \in \mathbb{C} \mid x, y \in \mathbb{R}, |y| \le \xi \}$$

where $\xi > 0$ is a constant. Then the Fourier series of f(x) converges to f(x) and

$$f(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}, \qquad a_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx.$$

Answer the following questions.

(i) Considering the contour integration along the rectangular path connecting the points $0, 2\pi, 2\pi + i\xi$ and $i\xi$ in this order on the complex plane, show that for any integer k,

$$a_k = \frac{e^{k\xi}}{2\pi} \int_0^{2\pi} f(x+i\xi)e^{-ikx}dx.$$

Moreover show that

$$a_k = \frac{e^{-k\xi}}{2\pi} \int_0^{2\pi} f(x - i\xi)e^{-ikx} dx.$$

- (ii) Let $L = \max\{|f(z)| \mid z \in D_{\xi}\}$. Show that for any integer $k, a_k \leq Le^{-\xi|k|}$.
- (iii) Let c > 1 be a constant and let

$$f(x) = \frac{1}{\cos x - c}.$$

Show that for any positive real number $\eta < \log(c + \sqrt{c^2 - 1})$, there is a constant M > 0 such that for all integer k, $a_k \leq Me^{-\eta|k|}$ holds.

グラフ理論

2

G を点集合 V,枝集合 E から成る単純連結無向グラフとし,各枝 $e \in E$ には実数値の重み w(e) が付与されている.点の部分集合 $X \subseteq V$ に対し X と $V \setminus X$ の間の枝の集合をE(X) と記す.枝の部分集合 $S \subseteq E$ に対して $w(S) \triangleq \sum_{e \in S} w(e)$, $w_{\max}(S) \triangleq \max_{e \in S} w(e)$ と定める.以下の問いに答えよ.

- (i) $(X,F),X \neq V$ を G の部分木とし,G の最小木には木 (X,F) を含むものが存在すると仮定する。 $a_F = uv \in E(X)$ を E(X) の中で重み最小の枝とする。このとき G の最小木には $(X \cup \{u,v\},F \cup \{a_F\})$ を含むものが存在することを証明せよ。
- (ii) 最小木を求めるプリム法を記述し、その正当性を証明せよ.
- (iii) (V,T^*) をGの最小木とする.このとき Gの任意の全域木 (V,T) に対して $w_{\max}(T^*) \le w_{\max}(T)$ が成り立つことを証明せよ.

Graph Theory

2

Let G be a simple and connected undirected graph with a vertex set V and an edge set E such that each edge $e \in E$ is weighted by a real value w(e). For a subset $X \subseteq V$ of vertices, let E(X) denote the set of edges between X and $V \setminus X$. For a subset $S \subseteq E$ of edges, define $w(S) \triangleq \sum_{e \in S} w(e)$ and $w_{\max}(S) \triangleq \max_{e \in S} w(e)$. Answer the following questions.

- (i) Let $(X, F), X \neq V$ be a subtree of G and assume that one of the minimum spanning trees of G contains the tree (X, F). Let $a_F = uv \in E(X)$ be an edge with the minimum weight among the edges in E(X). Prove that one of the minimum spanning trees of G contains $(X \cup \{u, v\}, F \cup \{a_F\})$.
- (ii) Describe Prim's method for computing a minimum spanning tree and prove its correctness.
- (iii) Let (V, T^*) be a minimum spanning tree of G. Prove that $w_{\max}(T^*) \leq w_{\max}(T)$ holds for every spanning tree (V, T) of G.

3

 $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $C \in \mathbb{R}^{n \times n}$ とする. パラメータ $x = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^n$ をもつ次の非線形計画問題を考える.

P(
$$\boldsymbol{x}$$
): Minimize
$$\sum_{i=1}^{n} (\boldsymbol{z}^{i})^{\top} \boldsymbol{z}^{i} + \boldsymbol{y}^{\top} \boldsymbol{y} + \boldsymbol{x}^{\top} \boldsymbol{C} \boldsymbol{x}$$
subject to $\boldsymbol{y} - \sum_{i=1}^{n} x_{i} \boldsymbol{z}^{i} = \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}$

ここで、P(x) の決定変数は $y, z^i \in \mathbb{R}^m$ $(i=1,\ldots,n)$ である。また、「は転置記号を表す。さらに、任意の x に対して、問題 P(x) の最適値が定義されているとし、その最適値を f(x) と表す。

以下の問いに答えよ.

- (i) 問題 P(x) のカルーシュ・キューン・タッカー条件 (Karush-Kuhn-Tucker 条件) を書け.
- (ii) 問題 P(x) の目的関数が、 $y, z^i \in \mathbb{R}^m$ (i = 1, ..., n) に対して凸であることを示せ.
- (iii) C を正定値対称行列と仮定し,次の最適化問題を考える.

P1: Minimize
$$f(\mathbf{x})$$

subject to $\mathbf{x} \in \mathbb{R}^n$

 $x^* \in \mathbb{R}^n$ を問題 P1 の大域的最適解とするとき、以下の不等式が成り立つことを示せ、

$$(oldsymbol{x}^*)^ op oldsymbol{x}^* \leqq rac{oldsymbol{b}^ op oldsymbol{b}}{\lambda_{\min}(oldsymbol{C})}$$

ただし、 $\lambda_{\min}(C)$ は C の最小固有値を表す.

(iv) \boldsymbol{A} を $m \times n$ 零行列, \boldsymbol{b} を m 次元零ベクトルと仮定する.以下の最適化問題を考える.

P2: Minimize
$$f(\boldsymbol{x})$$

subject to $\boldsymbol{x}^{\top}\boldsymbol{x} \leq \alpha$

ここで、 $\alpha \in \mathbb{R}$ は正の定数である. $(\hat{x}, \rho), (\bar{x}, \rho) \in \mathbb{R}^n \times \mathbb{R}$ が共に問題 P2 のカルーシュ・キューン・タッカー条件を満たすとき、 $f(\hat{x}) = f(\bar{x})$ が成り立つことを示せ.

Operations Research

3

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{C} \in \mathbb{R}^{n \times n}$. Consider the following nonlinear programming problem with parameter $\mathbf{x} = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^n$:

$$P(\boldsymbol{x})$$
: Minimize $\sum_{i=1}^{n} (\boldsymbol{z}^{i})^{\top} \boldsymbol{z}^{i} + \boldsymbol{y}^{\top} \boldsymbol{y} + \boldsymbol{x}^{\top} \boldsymbol{C} \boldsymbol{x}$
subject to $\boldsymbol{y} - \sum_{i=1}^{n} x_{i} \boldsymbol{z}^{i} = \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}$,

where the decision variables are $\boldsymbol{y}, \boldsymbol{z}^i \in \mathbb{R}^m$ (i = 1, ..., n), with $^{\top}$ denoting transposition. Moreover, denote by $f(\boldsymbol{x})$ the optimal value of problem $P(\boldsymbol{x})$, assuming that it is well-defined for all \boldsymbol{x} .

Answer the following questions.

- (i) Write out the Karush-Kuhn-Tucker conditions of P(x).
- (ii) Prove that the objective function of problem P(x) is convex with respect to $y, z^i \in \mathbb{R}^m \ (i = 1, ..., n)$.
- (iii) Assume that \boldsymbol{C} is symmetric positive definite and consider the following optimization problem:

P1: Minimize
$$f(x)$$
 subject to $x \in \mathbb{R}^n$.

Show that the following inequality holds when $\boldsymbol{x}^* \in \mathbb{R}^n$ is a global optimal solution of problem P1:

$$(oldsymbol{x}^*)^ op oldsymbol{x}^* \leqq rac{oldsymbol{b}^ op oldsymbol{b}}{\lambda_{\min}(oldsymbol{C})},$$

where $\lambda_{\min}(C)$ denotes the smallest eigenvalue of C.

(iv) Assume that \boldsymbol{A} is the $m \times n$ zero matrix and \boldsymbol{b} is the m-dimensional zero vector. Consider the following optimization problem:

P2: Minimize
$$f(\boldsymbol{x})$$

subject to $\boldsymbol{x}^{\top}\boldsymbol{x} \leq \alpha$,

where $\alpha \in \mathbb{R}$ is a positive constant. Show that $f(\hat{x}) = f(\bar{x})$ holds, when both $(\hat{x}, \rho), (\bar{x}, \rho) \in \mathbb{R}^n \times \mathbb{R}$ satisfy the Karush-Kuhn-Tucker conditions of problem P2.

現代制御論

4

線形状態方程式

$$\frac{d}{dt}x = Ax + Bu, \quad x(0) = x_0$$

で記述されるシステムを考える.ただし, $A\in\mathbb{R}^{n\times n}, B\in\mathbb{R}^{n\times m}, x_0\in\mathbb{R}^n$ とする.対称行列 $P\in\mathbb{R}^{n\times n}$ を未知変数とする行列代数方程式

$$A^{\mathsf{T}}P + PA - PBB^{\mathsf{T}}P + I = 0 \tag{1}$$

を導入する.ただし,行列 A の転置行列を A^{\top} ,ベクトル x の転置ベクトルとノルムを それぞれ x^{\top} , $\|x\|=\sqrt{x^{\top}x}$ と表す.このとき以下の問いに答えよ.

- (i) $ab \neq 0$ を満たす $(a,b) \in \mathbb{R}^2$ に対して n=2, $A=\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$, $B=\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ とする.このとき,システムが不可制御となる (a,b) に対して,(1) の正定解 P の個数を求めよ.
- (ii) B=0 とし、ある正定行列 P が (1) の解であるとする.このとき、任意の x_0 に対して $\lim_{t\to\infty}\|x(t)\|=0$ であることを示せ.
- (iii) あるPが(1)の解であるとする.このとき,任意の x_0 および $\tau>0$ に対して $\int_0^\tau (\|x(t)\|^2 + \|u(t)\|^2) dt = x_0^\top P x_0 x(\tau)^\top P x(\tau) + \int_0^\tau \|u(t) + B^\top P x(t)\|^2 dt$ が成り立つことを示せ.
- (iv) $H = \begin{bmatrix} A & -BB^\top \\ -I & -A^\top \end{bmatrix}$ とするとき, λ が H の固有値ならば $-\lambda$ も H の固有値であることを示せ.

Modern Control Theory

4

A linear system is described by the state equation

$$\frac{d}{dt}x = Ax + Bu(t), \quad x(0) = x_0,$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, x_0 \in \mathbb{R}^n$. A matrix algebraic equation

$$A^{\top}P + PA - PBB^{\top}P + I = 0 \tag{1}$$

with respect to a symmetric matrix $P \in \mathbb{R}^{n \times n}$ is introduced. The transpose of a matrix A is denoted by A^{\top} . The transpose and the norm of a vector x are denoted by and x^{\top} and $||x|| = \sqrt{x^{\top}x}$, respectively. Answer the following questions.

- (i) Let n=2, $A=\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$, $B=\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ with $(a,b)\in\mathbb{R}^2$ such that $ab\neq 0$. Then, find the number of positive definite solution P to (1) for (a,b) which makes this system uncontrollable.
- (ii) Suppose that B=0 and that a positive definite matrix P satisfies (1). Prove $\lim_{t\to\infty} ||x(t)|| = 0$ holds for any x_0 .
- (iii) Suppose that P is a solution to (1). Prove that

$$\int_0^{\tau} (\|x(t)\|^2 + \|u(t)\|^2) dt = x_0^{\mathsf{T}} P x_0 - x(\tau)^{\mathsf{T}} P x(\tau) + \int_0^{\tau} \|u(t) + B^{\mathsf{T}} P x(t)\|^2 dt$$

holds for any x_0 and $\tau > 0$.

(iv) Define $H = \begin{bmatrix} A & -BB^{\top} \\ -I & -A^{\top} \end{bmatrix}$. Prove that for any eigenvalue λ of H, $-\lambda$ is also an eigenvalue of H.

物理統計学

5

エネルギーレベルが

$$E_n = h\nu\left(\frac{1}{2} + n\right) \quad n = 0, 1, 2, 3, \dots$$

なる振動数 $\nu(>0)$ の振動子系を考える. ここで h(>0) は定数であり, エネルギーレベル の縮退は無く, 同系の分配関数 Z は

$$Z = \sum_{n=0}^{\infty} \exp\left(-\frac{E_n}{kT}\right)$$

で与えられるとする. ただし, k>0 をボルツマン定数, T を絶対温度とする. 以下の問い に答えよ.

- (i) 分配関数 Z を計算せよ.
- (ii) エネルギーEの期待値 $\langle E \rangle$ を求めよ.
- (iii) 比熱 $C = \frac{d\langle E \rangle}{dT}$ を求めよ.
- (iv) 比熱 C の低温極限 $(T \rightarrow 0)$ を求めよ.
- (v) 比熱 C の高温極限 $(T \to \infty)$ を求めよ.

Physical Statistics

5

Consider an oscillator system of a frequency ν with the energy levels

$$E_n = h\nu\left(\frac{1}{2} + n\right)$$
 for $n = 0, 1, 2, 3, \dots$

where h(>0) is a constant and no energy level is degenerate. The distribution function Z of the system with the absolute temperature T is given by

$$Z = \sum_{n=0}^{\infty} \exp\left(-\frac{E_n}{kT}\right),\,$$

where k(>0) is the Boltzmann constant. Answer the following questions.

- (i) Compute the distribution function Z.
- (ii) Obtain the average energy $\langle E \rangle$.
- (iii) Obtain the specific heat $C = \frac{d\langle E \rangle}{dT}$.
- (iv) Obtain the specific heat C in the low temperature limit $(T \to 0)$.
- (v) Obtain the specific heat C in the high temperature limit $(T \to \infty)$.

力学系数学

6

a(t), b(t) を t のある有理式として次の実微分方程式を考える.

$$\frac{d^2x}{dt^2} + a(t)\frac{dx}{dt} + b(t)x = 0\tag{1}$$

以下の問いに答えよ.

(i) $k \ge 1$ をある整数として, $x = t^k$ が式 (1) の解であるための a(t), b(t) に関する必要十分条件を求めよ.

以下では,ある整数 $k \ge 1$ に対して (i) で求めた条件が成り立つものとし, $\phi(t)$ を t^k と線形独立な解として,

$$p(t) = t\frac{d\phi}{dt}(t) - k\phi(t)$$

とおく.

- (ii) a(t), b(t) を p(t) を用いて表わせ.
- (iii) p(t) = t のとき a(t), b(t) を定めよ.
- (iv) 式(1)のすべての解が定数でない多項式のとき, a(t), b(t) は多項式でないことを示せ.

Mathematics for Dynamical Systems

6

Let a(t) and b(t) be rational functions of t. Consider the real ordinary differential equation

$$\frac{d^2x}{dt^2} + a(t)\frac{dx}{dt} + b(t)x = 0.$$

$$\tag{1}$$

Answer the following questions.

(i) Obtain a necessary and sufficient condition on a(t) and b(t) for $x = t^k$ to be a solution to Eq. (1) for each integer $k \ge 1$.

In the following, assume that the condition obtained in (i) holds for an integer $k \ge 1$, and let

$$p(t) = t\frac{d\phi}{dt}(t) - k\phi(t),$$

where $\phi(t)$ is a solution which is linearly independent of t^k .

- (ii) Write down a(t) and b(t) in terms of p(t).
- (iii) Determine a(t) and b(t) when p(t) = t.
- (iv) Show that a(t) and b(t) are not polynomials if all solutions to Eq. (1) are nonconstant polynomials.