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(i) B#REn =112 LT,
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An English Translation:

Basic Mathematics 1

1

Let y = arctanx denote the inverse function of y = tanx defined on the open interval

( -5 g) The function f(z) = arctanz is real analytic on R. Answer the following

questions.
(i) Show that for any integer n = 1,
(1422 fO D (2) + 2(n + DafO ™ (z) + n(n + 1) (x) = 0,
where f(™(z) is the nth derivative of f(x).
(ii) Obtain the Taylor series for f(z) at z = 0.

(iii) Find the convergence radius of the Taylor series obtained in (ii).

(iv) Show that
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G=(V,E) 2 58EABV, HES EPoRIEMAENT 778735, Rw;G) % GIZBW
TRuPSHMABECEETE A ROEALED, dist(u,v;G) ZRuDPSRvANEDLGD
BHBORMEOEI LT 5. v € Ru;G) D& ik dist(u,v;G) 2 |V| 2 EDD. BT
7 G ol ec EZHIRUZERT I 7% G —e 3T, s, t 2V D_5iL9 5.
GRBHE)ZMZEOVEZONTWVWS LTS, UNOMWIEZ L.

(i) t € R(s; Q) LANET 5. ss S AUIAEBEMABTREDOE D% KD D O(|V|+|E|)
7 LT Rh kLA K.

(ii) dist(s,t;G —e) > dist(s, t; G) 27z d AL e € EDPFIET 20 E S P2 HET
20(V|+|E)RET7TVIV X L%EZ K.

(iii) dist(s,t; G) = dist(t,s;G) = 3 < dist(s,t;G —e) = dist(t,s;,G —e) TH D /K
s,;teV, Alflfiece E2H2HM7 77 G = (V,E) DHIZERE K.



An English Translation:

Data Structures and Algorithms

2

Let G = (V, E) be a simple directed graph with a vertex set V' and an edge set E. Let

R(u; G) denote the set of vertices reachable from a vertex u by a directed path in G and
dist(u, v; G) denote the shortest length of a path from a vertex u to a vertex v in G, where
we set dist(u,v;G) 2 |V|if v € R(u; G). Let G — e denote the directed graph obtained
from G by removing a directed edge e € E. Let s and t be two vertices in V. Assume

that G is stored in adjacency lists. Answer the following questions.

(i) Assume that ¢t € R(s;G). Give an O(|V| + |E|)-time algorithm that computes a
directed path with the shortest length from s to ¢.

(ii) Give an O(|V|+ |E|)-time algorithm that tests whether there exists a directed edge
e € F such that dist(s, ;G — e) > dist(s, t; G).

(iii) Construct an example of a directed graph G = (V, E) that contains two vertices
s,t € V and a directed edge e € E such that dist(s,t;G) = dist(t,s;G) = 3 <
dist(s,t; G — e) = dist(t, s; G — e).
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A BZEmxniidled5d. SHIZADE(i,j) iRz Aj=—i—jG=1,...,mj=
1,...,n) &3 5.

UTFDNRIA—=& ueR™%2d DMLEIHITEP(u) £V 7 XA —X v e R 25 DR
FHEE Qv) 2F X 5.

P(u): Minimize u’ Az
subject to zn:x <1
x>0
Q(v): Minimize v'B'y
subject to iyi <1
y=20
272U, P(u) DIREZER Tz = (11,20,...,2,) ER*"THY, Q(v) DIRELTITy =
(Y1, Y2, ym) ER™"THB. F£7z, T IFREGLESE2RT.
M P(u) DI R TOREMRDES % Sp(u) & U, HEQ(v) DT R TOREMDES

% Sqv) &3 5. 51T, X ={(z",y") e R"XR™ [z € Sp(y"), y" € Sq(x")} £ T 2.
U TFDOBIWWIZE Z .

(i) TR P (u) OO AU % 2813

(i) w = (up, Uy s Up) Zu; S0 (G =1,...,m) THEIERXT LT B, ZDLE,
0€c Sp(u) THDZ L2mrt.

(i) B=—-AYF5. Z0OLE, $RTO (x5, y") € X ITHLT (y)TAz* =0 &7 3
Z LR

(iv) ueR"2uZ200Du£A0THENRT MLETEH, ZDLE, Sp(u) 2R XK.

(V) B=AY T2 Zorx, X %2koE.



An English Translation:

Linear Programming

3

Let A and B be m x n matrices. Suppose that the (i,j)th entry of A is given by

Aij=—i—ji=1,....mj=1.n).
Consider the following linear programming problems P(u) and Q(v) with vectors of

parameters © € R™ and v € R", respectively.

P(u): Minimize u'Ax

subject to ZIZ <1
i=1
x>0,

Q(v): Minimize v B'y

subject to Zyi <1
i=1

y 20,
where the decision variables of P(u) and Q(v) are © = (z1,79,...,2,)" € R" and y =
(Y1, Y2, - - -, Ym) " € R™, respectively. Here the superscript " denotes transposition.

Let Sp(u) and Sq(v) denote the sets of all optimal solutions of problems P(u) and
Q(v), respectively. Moreover, let X = {(z*,y*) € R" x R™ | * € Sp(y*), y* € Sq(x*)}.

Answer the following questions.
(i) Write out a dual problem of problem P(u).

(i) Let u = (uy,us,...,u,)" be a vector such that u; < 0 (i = 1,...,m). Show that

0e Sp(’l.l,)
(iii) Suppose that B = —A. Then show that (y*)" Az* = 0 for all (z*,y*) € X.
(iv) Let w € R™ be a vector such that u =2 0 and uw # 0. Obtain Sp(u).

(v) Suppose that B = A. Obtain X.
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M1&7 4 —FN ZHIERERT. 22T P(>s) IEHIENSR, kid74—FNv o754
¥, r EZBBAT, e FMRE, y IZHAITH B, HIER P(s) &

cs+1

P(S)232+as+b
TEZBN22 52, 727La>0,b>0R25602 c 3EREHTHZ. UTOMNZE

Z K.
(i) 74— XNy ZHlEREZLENT 27542 F DEEERD L.
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XS B HIE R EZ R &

(iil) r ZHMFEEREBE T2, 74 ¥ kEHEN y OEFEEIFET 5 X5 1GEIh T
255, BB tg>0DPFELT, 0<t <tp BT y(t) 2y DEFMEE ZEF
T B KO TER ¢ DEEERD XK.

(iv) 74 Y kiZ7 4 — ENy ZHIBIRPEEILKE S XOIGEIINTVWD T 5. p 25
EBE L Trt)=c ERZ2BBANEMZ X, H1y DVERE K2 p DEE
R X.

T ~ e i 1 P(s) .

X1 74— Ky 7R



An English Translation:

Linear Control Theory

4

A feedback control system is shown in Figure 1, where P(s) is a plant, k is a feedback

gain, r is a reference input, e is an error, and y is an output. The plant P(s) is given by

cs+1

Pls)= =21~
(5) s2+as+b’

where a > 0, b > 0, and ¢ are real constants. Answer the following questions.
(i) Find the set of the gain k for which the feedback control system is stable.

(ii) Let the reference input r be the unit step signal. Find the set of the gain k for
which the steady-state output exists. Moreover, calculate the steady-state output

for each k in the set obtained in (ii).

(iii) Let the reference input r be the unit step signal and the gain k be chosen in such
a way that the steady-state output exists. Find the set of the constant ¢ for which
there exists to > 0 such that y(¢) and the steady-state output have opposite signs
on 0 <t <t.

(iv) Suppose that the gain k is chosen in such a way that the feedback control system is
stable. Let the reference input  be written as r(t) = e?*, where p is a real constant.

Find the set of p for which the output y is bounded.

r + e I 4 Ps) R

Figure 1 Feedback control system
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HE M, ¥1E Rs DEE—FZIR A DHLHR S r (2 R) DHEECH 2 HE m OHMDIE
BeEZ5. HASINEREZ G35 UMTOMWCEZ L.

(i) rZRsDEZDRAWCKoTELZHELGNORT V¥ vy V2FEE K.

(i) ERAER A DRI LD HE X Vi THLH ATRE (FEFRE S (r = 00) IZEZERTRE) & §7%.
HE Vg ORIMEZ KD XK.

(iii) (i) DEE Vg DIEOHE c THABND LT D, ZDELZDIRADFERs & ¢, M
ZRHOWTRD &,



An English Translation:

Basic Mechanics

S

Consider the motion of a particle of mass m at a distance r (2 Rg) from the center

of a spherical body A with mass M of uniform density and radius Rg. Let Newton’s

gravitational constant be denoted by G. Answer the following questions.
(i) Compute the gravitational potential at r = Rg affected by the spherical body A.

(ii) Obtain the minimum speed Vg such that the particle can be attained at r = oo

where Vg is a speed at a point of the surface of the spherical body A.

(iii) Consider that Vi obtained in (ii) is equal to the speed of light ¢. Obtain the radius
Rg of the spherical body A in terms of ¢ and M.



AZBZRICEDD nxnfidle 3 5.
—ay —ag - —Ap—2 —Qp—1 —0Qn
1 o - 0 0 0
0 0 1 0 0
0 o - 0 1 0

7z, plr) BRICED B+ DZHAL T 5.
p(z) = det(zl, — A)
ZZT, L, EnREAMITHIZRT. k=1,2,....,n—1IXNLT, nxnfThlA, 270y

Zsr::kapdl
I Or—1,2 Ok—1,n—k—1
Ay =1 Ogp_1 Cy O2,n—k—1

On—tk-1k-1 On—g—12 Tn—k—1
Y¥ 5. 2L, O &0 x m BATHN, Cp 12 x 2175
“= (1)

ERT. nxniTHl A, ERAITH A, = diag(l,...,1,—a,) £ T 5. LTFOMWICEZ X.
(i) ZHK p(z) &, Ea LIEEEBr 12X 3 ar” DIEDOHDOANZ X > TRDE.
(i) A= AjAy- - Ay Ay SR D LD T ¥ BRE.
(iii) [ — k| > 1IBWVT, AyA; = AjA BSD D Z & ZRE.

) n

TRHET2. ZOLE,
p(l’) = det(xln — A1A3 tet An A2A4 ce An—l)

(iv

DD LD Z L R

(v) n ZERE T 3. p(r) = 0 DU, n x n ORFFZEIATHICEE 2 HER
ar+x —1
-1 0 T
T az+ axr —1

det 1 0 - =0

T Qp+ Ap_ 1T

DIRE =T 2 L 2mE.



An English Translation:
Basic Mathematics II

6

Let A be an n X n matrix defined as

—ap —az -+ —Ap—2 —Gp—1 —0pn
1 o - 0 0 0
A O 1 " 0 0 O 7
0 0 1 0 0
0 o - 0 1 0
and let p(z) be a polynomial in « defined as p(x) = det(x1, — A), where I,, is the identity
matrix of order n. For k =1,2,... n — 1, let us define the n x n matrix Ay by the block
diagonal matrix
Iy Ok—1,2 Ok—1,n—k—1
A= Ogp_1 Cr 02.n—k—1 ;

On—k—1k-1 On—g—12 Tn—p—1
where 0y, is the ¢ X m zero matrix and Cj, is the 2 x 2 matrix
o — Qg 1
Cp = ( o 1 ) .
Define the n x n matrix A, by the diagonal matrix A, = diag(1,...,1,—a,).

Answer the following questions.
(i) Express the polynomial p(z) as a sum of terms of the form ax”, where a is a constant

and r is a non-negative integer.
(ii) Show that A = AjAs--- A, _1A,.
(i) Show that AyA; = A;A; for |j — k| > 1.
(iv) Let n be an odd integer. Show that p(z) = det(zl, — A1 A3+ A, AsAy--+ Ap_q).
(v) Let n be an odd integer. Show that the roots of p(z) = 0 coincide with the roots of

the equation
ar+z —1
—1 0 x

det . =0,

x
r Qp+ap_1T

determined by an n x n symmetric tridiagonal matrix.
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={z=0+iycCla,ycR Jy =&}
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o0
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(1) BEHRFH LD R0, 2m, 27 + i€, i 2 ZDIHTHEA TTE 5 EHFOREEIZI > 72 A
MREEAHZ LI, MEOEELIZHL,
ek

CLk:—
2w

f(x +i&)e *rdy
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a = 27r ; f(x ig)e”" du

Rt
(i) L=max{|f(2)| |2 € D¢} £3 5. [EREOEEEIZHL, ap £ LetH %RHE,

(iil) ¢>1%EHE L,
1
f<x):cosx—c
95, EEDEDFEHn <loglc+Ve2—1) 1L, 5 M >0DPFEL, TR
TOEREIZHL a, £ MeH DI H DT & Z2RE.




An English Translation:

Applied Mathematics

1

Let i denote the imaginary unit. Let f(z) be a real analytic function satisfying f(z+2m) =

f(z) and having an analytic continuation on an open set including
De={z=a+iyeCla,yeR, [yl =¢}

where £ > 0 is a constant. Then the Fourier series of f(z) converges to f(z) and

o0

flz) = Z ape™®, ap = % /O% f(z)e *dg,

k=—o00

Answer the following questions.

(i) Considering the contour integration along the rectangular path connecting the points

0,27, 2w + i€ and £ in this order on the complex plane, show that for any integer

k,
ekg 2T )
ap = — flx +i€)e *dx.
2m Jo
Moreover show that
e—kg 2T .
= — —1&)e .
W = = ; [z —i&e €

(ii) Let L = max{|f(2)|| z € D¢}. Show that for any integer k, a; < Le~¢/*l.

(iii) Let ¢ > 1 be a constant and let

fla) = —

cosST —C

Show that for any positive real number n < log(c + v/¢? — 1), there is a constant
M > 0 such that for all integer k, a; < Me ¥ holds.
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GrRER YV, HES E »olisBiidEfEma s 278 L, &% e € F ITIFERHED
HA we) MG INTNDE., fAOWAEEX CVIIHL X & V\ X DHOKOES %
Euaaaﬁ.&@%ﬁ%éngmﬁqu@néE:m@,%mwyé%gm@t

eeS

EDDH. UTFTOFWIEZ L.

1) (X,F), X #V &2 GOHIKREL, GOERIRIZIFIAR (X,F) 2E50L5DOMRFHET
LHERETS. ap=uwv € E(X) % E(X) DR TEHEHAR/NDOKET S, Z0LE G
DENARIZIE (X U{u,v}, FU{ar}) ZELHDODPFEIET 5 Z & ZiEHE K.

(i) BIARERDZ TV LERFRL, Z DI UM% I X,

(iii) (V,T*) %2 GOBRNIRET S, 2D E GDERDEAR (V, T) 1T U T wpax (T%) <
Winax (T) DD YLD Z & ZEEFHE X



An English Translation:

Graph Theory

2

Let G be a simple and connected undirected graph with a vertex set V' and an edge set

E such that each edge e € E is weighted by a real value w(e). For a subset X € V of
vertices, let E(X) denote the set of edges between X and V' \ X. For a subset S & E of

edges, define w(S) £ E w(e) and Wy (S) = max w(e). Answer the following questions.
ec
ecsS

(i) Let (X, F), X # V be a subtree of G and assume that one of the minimum spanning
trees of G contains the tree (X, F'). Let ar = wv € E(X) be an edge with the min-
imum weight among the edges in F(X). Prove that one of the minimum spanning

trees of G contains (X U {u,v}, FU {ar}).

(ii) Describe Prim’s method for computing a minimum spanning tree and prove its

correctness.

(iii) Let (V,7*) be a minimum spanning tree of G. Prove that wpax(T™) = wWmax(T)
holds for every spanning tree (V,T) of G.
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AcR™" beR"™, CcR™ LT3, NIA—Rx=(11,...,7,) €ER*"%ZHDRD
FEREEIHEMEZ Z 2 5.

P(x):  Minimize Z(zi)Tzi +y'ly+ax'Cx

=1

subject to y — inzi =Ax —b

=1

ZIT, Ple) DIREZEIZy,z" eR™ (i=1,...,n) THS. £/, "3uHEHLTER
T X5, RO IIRLT, MEP(z) OFREENPERZRINTVS L L, ZOEEE
% f(x) &ET.

MTFofWwzEZ L.

(i) MEP(x) DAN—Y 2 Fa— - &y H—5M (Karush-Kuhn-Tucker 5e) % F 7.
(i) MEP(x) DHMBEED, y,z/ e R™ (i=1,...,n) ZTHLTHNTHS I Li2rE.

(i) € % ERFEHFATIEAGE L, ROBELHEE X 3.

P1:  Minimize f(x)
subject to x € R"

z* € R" 2 Pl DKL T2 & &, UTFOAREADLD LD & 2RE.
b'b

72720, Auin(C) 13 C OE/NEAEZ KT

(iv) A%ZmxnZETH, b mikLENT MVERET S, U TOREIEEZE Z 5.
P2:  Minimize f(x)
subject to 'z < o
ZIZT, ac RFFEDEHTHS. (2,p),(x,p) € R" x RPILIZFE P2 DAV —
VasFa—v - Ry A—F4EHZTEE, f(@)=f(x) DD I L EIRYE.



An English Translation:

Operations Research

3

Let A € R™" b e R™ and C € R"™". Consider the following nonlinear programming

problem with parameter = (21,...,2,)" € R™
P(x):  Minimize Z(zi)Tzi +y'y+z'Cz
i=1
subject to y — Z 12" = Az — b,

i=1
where the decision variables are y, 2z € R™ (i = 1,...,n), with T denoting transposition.
Moreover, denote by f(x) the optimal value of problem P(x), assuming that it is well-
defined for all .

Answer the following questions.
(i) Write out the Karush-Kuhn-Tucker conditions of P(x).

(ii) Prove that the objective function of problem P(x) is convex with respect to

y, 2 eR™ (i =1,...,n).

(iii) Assume that C' is symmetric positive definite and consider the following optimiza-

tion problem:
P1:  Minimize f(x)
subject to x € R™.
Show that the following inequality holds when x* € R™ is a global optimal solution

of problem P1:
b'db
>\min<C) ’

where A\pin(C) denotes the smallest eigenvalue of C.

(a:*)Tw* §

(iv) Assume that A is the m x n zero matrix and b is the m-dimensional zero vector.
Consider the following optimization problem:
P2:  Minimize f()
subject to 'z < a,
where @ € R is a positive constant. Show that f(z) = f(&) holds, when both
(@, p), (&, p) € R" x R satisfy the Karush-Kuhn-Tucker conditions of problem P2.
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AREE TR

d
P Az + Bu, x(0) = xg

TR ENBZ AT LAREZD. 12770, Aec R BeR™" e R* 2§ 3. WFMT
H P e R 2 RAIZEE 3 2175851

ATP+PA—-PBB'P+1=0 (1)

ZEANT D, 72i2L, 170 A D@ TR AT, X7 ML g DIENT MLE VL%
zhzhz’, |z =VaTz 2RI, ZOLZUTOMWICEZR L.

B = m r¥s. Zor

(i) ab # 0 ZWi7z 3 (a,0) e R*ZIIMLTn=2 A= [ le
DIEEM P D% %KD K.

a
0
X, YRTLADAAHIEE 725 (a,b) 1T LT, (1)

(i) B=0& L, 2IEETHN P (1) DETH2LT5. ZOLE, fEED o ITHL
T lim [lz(t)]| =0 TH % Z & &7t

(i) 2 P23 (1) DfFTHZL35. ZOLE fEBED 20 BXE 7> 0L T
/ ()1 + Ju()|2)dt = ag Py — a(r) / lu(t) + BT Pa(t)|2dt
0
DD IO Z ¥ Rt

_ T
(iv) H = {141 f;fr} L3HLE, AP HOREGFEBLE-AD HOEAETSHS Z
LB



An English Translation:

Modern Control Theory

4

A linear system is described by the state equation

d
= Ax + Bu(t), x(0) = xy,

where A € R™" B € R™™ 1, € R™. A matrix algebraic equation
ATP+PA—-PBB'P+1=0 (1)

with respect to a symmetric matrix P € R™*" is introduced. The transpose of a matrix
A is denoted by AT. The transpose and the norm of a vector = are denoted by and z"

and ||z| = V2T x, respectively. Answer the following questions.
(i) Let n = 2, A = {8 ﬂ B = m with (a,b) € R? such that ab # 0. Then, find
the number of positive definite solution P to (1) for (a,b) which makes this system

uncontrollable.

(ii) Suppose that B = 0 and that a positive defnite matrix P satisfies (1). Prove

tlim ||z(t)|| = 0 holds for any .
—00
(iii) Suppose that P is a solution to (1). Prove that
/ (eI + lu(®)|*)dt = @g Pao — ()" Pa(r) + / lu(t) + B Pa(t)||*dt
0 0

holds for any zy and 7 > 0.

. A —BBT
(iv) Define H = [—I T

]. Prove that for any eigenvalue A of H, —\ is also an
eigenvalue of H.
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En:hu(§+n) n=20,1,2,3,...

2 5IREB v (> 0) DIREITFREEZS. 22T h(>0)IFEHRTHY, THLF—L L
DHERITIE L, FRDO AR Z 1
o0 En
Z = ;exp (_ﬁ>
TEZoN22 T3, 270, E>02RVY~<VER T RHEHEE L 5. LIFORW
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(i) DECEIS Z Z3ER &

(ii) =V — FE OHFRHE (F) 2K X.

(i) H#C = % R k.

(iv) HBAC DRIRMIER (T — 0) 23K X.

(v) HE O OERBIR (T — oo) %R k.



An English Translation:

Physical Statistics

S

Consider an oscillator system of a frequency v with the energy levels

1
E, = hv <§+n> forn=20,1,2,3,...

where h(> 0) is a constant and no energy level is degenerate. The distribution function

Z of the system with the absolute temperature 7" is given by

= Zexp (—%) )

n=0
where k(> 0) is the Boltzmann constant. Answer the following questions.

(i) Compute the distribution function Z.

(ii) Obtain the average energy (FE).

d(E
(iii) Obtain the specific heat C' = %
(iv) Obtain the specific heat C' in the low temperature limit (7" — 0).

(v) Obtain the specific heat C' in the high temperature limit (7" — 00).
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() k21 %528 LT, 2=t"D»RX (1) DFETH 272D a(t),b(t) \ICHT 5 HE

> 1
TR K.

LI, B35 E> 1ISHLT (1) TROEZEDRD TObDLL, o) % t* &
ST R e LT,

p(t) = £2(6) ~ ko)

(i) a(t),b(t) Z p(t) Z HHWTERDOE.
(iil) p(t) =t D& Z a(t),b(t) ZED X.

(iv) (1) DFTXRTOMIPERTHRWZHADO L &, a(t),b(t) IZZHEATRNZ L Z2RE.



An English Translation:

Mathematics for Dynamical Systems

6

Let a(t) and b(t) be rational functions of ¢. Consider the real ordinary differential equation

d’z dz
ﬁ + a(t)a + b(t)l’ =0. (1)

Answer the following questions.

(i) Obtain a necessary and sufficient condition on a(t) and b(t) for z = t* to be a

solution to Eq. (1) for each integer k = 1.

In the following, assume that the condition obtained in (i) holds for an integer k& = 1,
and let
d¢

plt) = 152(6) = ko),

where ¢(t) is a solution which is linearly independent of ¢*.
(ii) Write down a(t) and b(t) in terms of p(¢).
(iii) Determine a(t) and b(t) when p(t) = ¢.

(iv) Show that a(t) and b(t) are not polynomials if all solutions to Eq. (1) are nonconstant

polynomials.



