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An English Translation:

Modern Control Theory
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A linear system is described by the state equation

d
= Ax + Bu(t), x(0) = xy,

where A € R™" B € R™™ 1, € R™. A matrix algebraic equation
ATP+PA—-PBB'P+1=0 (1)

with respect to a symmetric matrix P € R™*" is introduced. The transpose of a matrix
A is denoted by AT. The transpose and the norm of a vector = are denoted by and z"

and ||z| = V2T x, respectively. Answer the following questions.
(i) Let n = 2, A = {8 ﬂ B = m with (a,b) € R? such that ab # 0. Then, find
the number of positive definite solution P to (1) for (a,b) which makes this system

uncontrollable.

(ii) Suppose that B = 0 and that a positive defnite matrix P satisfies (1). Prove

tlim ||z(t)|| = 0 holds for any .
—00
(iii) Suppose that P is a solution to (1). Prove that
/ (eI + lu(®)|*)dt = @g Pao — ()" Pa(r) + / lu(t) + B Pa(t)||*dt
0 0

holds for any zy and 7 > 0.
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(iv) Define H = [—I T

]. Prove that for any eigenvalue A of H, —\ is also an
eigenvalue of H.



