現代制御論

4

線形状態方程式

$$\frac{d}{dt}x = Ax + Bu, \quad x(0) = x_0$$

で記述されるシステムを考える.ただし, $A\in\mathbb{R}^{n\times n}, B\in\mathbb{R}^{n\times m}, x_0\in\mathbb{R}^n$ とする.対称行列 $P\in\mathbb{R}^{n\times n}$ を未知変数とする行列代数方程式

$$A^{\mathsf{T}}P + PA - PBB^{\mathsf{T}}P + I = 0 \tag{1}$$

を導入する.ただし,行列 A の転置行列を A^{\top} ,ベクトル x の転置ベクトルとノルムを それぞれ x^{\top} , $\|x\|=\sqrt{x^{\top}x}$ と表す.このとき以下の問いに答えよ.

- (i) $ab \neq 0$ を満たす $(a,b) \in \mathbb{R}^2$ に対して n=2, $A=\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$, $B=\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ とする.このとき,システムが不可制御となる (a,b) に対して,(1) の正定解 P の個数を求めよ.
- (ii) B=0 とし、ある正定行列 P が (1) の解であるとする.このとき、任意の x_0 に対して $\lim_{t\to\infty}\|x(t)\|=0$ であることを示せ.
- (iii) あるPが(1)の解であるとする.このとき,任意の x_0 および $\tau>0$ に対して $\int_0^\tau (\|x(t)\|^2 + \|u(t)\|^2) dt = x_0^\top P x_0 x(\tau)^\top P x(\tau) + \int_0^\tau \|u(t) + B^\top P x(t)\|^2 dt$ が成り立つことを示せ.
- (iv) $H = \begin{bmatrix} A & -BB^\top \\ -I & -A^\top \end{bmatrix}$ とするとき, λ が H の固有値ならば $-\lambda$ も H の固有値であることを示せ.

An English Translation:

Modern Control Theory

4

A linear system is described by the state equation

$$\frac{d}{dt}x = Ax + Bu(t), \quad x(0) = x_0,$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, x_0 \in \mathbb{R}^n$. A matrix algebraic equation

$$A^{\top}P + PA - PBB^{\top}P + I = 0 \tag{1}$$

with respect to a symmetric matrix $P \in \mathbb{R}^{n \times n}$ is introduced. The transpose of a matrix A is denoted by A^{\top} . The transpose and the norm of a vector x are denoted by and x^{\top} and $||x|| = \sqrt{x^{\top}x}$, respectively. Answer the following questions.

- (i) Let n=2, $A=\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$, $B=\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ with $(a,b)\in\mathbb{R}^2$ such that $ab\neq 0$. Then, find the number of positive definite solution P to (1) for (a,b) which makes this system uncontrollable.
- (ii) Suppose that B=0 and that a positive definite matrix P satisfies (1). Prove $\lim_{t\to\infty} ||x(t)|| = 0$ holds for any x_0 .
- (iii) Suppose that P is a solution to (1). Prove that

$$\int_0^{\tau} (\|x(t)\|^2 + \|u(t)\|^2) dt = x_0^{\mathsf{T}} P x_0 - x(\tau)^{\mathsf{T}} P x(\tau) + \int_0^{\tau} \|u(t) + B^{\mathsf{T}} P x(t)\|^2 dt$$

holds for any x_0 and $\tau > 0$.

(iv) Define $H = \begin{bmatrix} A & -BB^{\top} \\ -I & -A^{\top} \end{bmatrix}$. Prove that for any eigenvalue λ of H, $-\lambda$ is also an eigenvalue of H.