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An English Translation:

Modern Control Theory
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Fig.2: Parallel connection

Linear dynamical systems %3; and X5 are described by the linear state equations:
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where () € R™, x,(t) € R™ are the state vectors, u;(t) € R, us(f) € R are the inputs,
and 11(t) € R, y2(t) € R are the outputs of the systems ¥,, ¥, respectively. Furthermore,
A; € Rm™m By € RM*Y, Gy € R*™, Dy € R, A; € R™*™2 By € R™X1 () € RY*™2,
and Dy € R. Answer the following questions (i)-(v).

(i) Describe the state equation of the system with series connection shown in Pig. 1

when the input is u(t), the output is y(t), and the state vector is chosen as

5= {il]

(i) Describe the state equation of the system with parallel connection shown in Fig. 2

when the input is u(t), the output is y(¢), and the state vector is chosen as

T
z= |,
Ty
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In this subproblem, consider the system with series connection shown in Fig. 1
where 3, and 35 are given by

A=1,B=1Ci=1,D,=0,4y = {—?6 35] , By = []ﬂ O = [1 2], D, = 0,

and k is a real constant. Check the observability of the system. Let the initial
condition of ¥; be given as z1{0) = 3. Suppose that the output y(t) of the system
becomes identically 0 when the input u(t) is identically 0 and the initial condition

22(0) of X7 is appropriately selected. Determine k and z,(0).

It is known that the system ¥, is observable if and only if the matrix

Cy
Ci4;
CLAM -1

is nonsingular. Prove that this condition is equivalent to the statement that any

eigenvector z #£ 0 of A, satisfies Cyz # 0.

Assume that the systems X, and X, are observable. Prove that the state equation
derived in (ii) is observable if and only if the matrices 4; and A, share no common

eigenvalues.



