現代制御論

4

図1:直列接続

図2:並列接続

線形動的システム Σ_1 , Σ_2 が線形状態方程式

$$\Sigma_1: \begin{cases} \frac{dx_1}{dt} = A_1x_1 + B_1u_1 \\ y_1 = C_1x_1 + D_1u_1 \end{cases} \quad \Sigma_2: \begin{cases} \frac{dx_2}{dt} = A_2x_2 + B_2u_2 \\ y_2 = C_2x_2 + D_2u_2 \end{cases}$$

で記述されている。ただし $x_1(t) \in \mathbb{R}^{n_1}$, $x_2(t) \in \mathbb{R}^{n_2}$ はそれぞれのシステムの状態ベクトル, $u_1(t) \in \mathbb{R}$, $u_2(t) \in \mathbb{R}$ はそれぞれのシステムの入力, $y_1(t) \in \mathbb{R}$, $y_2(t) \in \mathbb{R}$ はそれぞれのシステムの出力である。また $A_1 \in \mathbb{R}^{n_1 \times n_1}$, $B_1 \in \mathbb{R}^{n_1 \times 1}$, $C_1 \in \mathbb{R}^{1 \times n_1}$, $D_1 \in \mathbb{R}$, $A_2 \in \mathbb{R}^{n_2 \times n_2}$, $B_2 \in \mathbb{R}^{n_2 \times n_2}$, $C_2 \in \mathbb{R}^{1 \times n_2}$, $D_2 \in \mathbb{R}$ とする。以下の問い (i)-(v) に答えよ。

(i) 図1の直列接続において、状態ベクトルを

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

ととるとき、入力を u(t)、出力を y(t) とするシステムの状態方程式を求めよ.

(ii) 図2の並列接続において、状態ベクトルを

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

ととるとき、入力をu(t)、出力をy(t)とするシステムの状態方程式を求めよ.

(iii) この小問では,

$$A_1 = 1, B_1 = 1, C_1 = 1, D_1 = 0, A_2 = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}, B_2 = \begin{bmatrix} 1 \\ k \end{bmatrix}, C_2 = \begin{bmatrix} 1 & 2 \end{bmatrix}, D_2 = 0$$

として、システム Σ_1 、 Σ_2 を定め、図 1 のように直列接続されたシステムを考える。ただし k は実数である.このシステムの可観測性を調べよ.次に、 Σ_1 の初期値を $x_1(0)=3$ とする.適当な Σ_2 の初期値 $x_2(0)$ を選択し、直列接続されたシステムの入力 u(t) を恒等的に 0 とすると、出力 y(t) も恒等的に 0 になった.このとき k と $x_2(0)$ を求めよ.

(iv) システム Σ_1 が可観測であるためには行列

$$\begin{bmatrix} C_1 \\ C_1 A_1 \\ \vdots \\ C_1 A_1^{n_1 - 1} \end{bmatrix}$$

が正則であることが必要十分であることが知られている。この条件は、 A_1 の任意の固有ベクトル $z \neq 0$ が $C_1z \neq 0$ を満たすことと等価であることを証明せよ。

(v) システム Σ_1 , Σ_2 は可観測であるとする. このとき (ii) で与えた状態方程式が可観測であるための必要十分条件は、行列 A_1 , A_2 が共通固有値を持たないことを証明せよ.

An English Translation:

Modern Control Theory

4

Fig.1: Series connection

Fig.2: Parallel connection

Linear dynamical systems Σ_1 and Σ_2 are described by the linear state equations:

$$\Sigma_1: \left\{ egin{aligned} rac{dx_1}{dt} &= A_1x_1 + B_1u_1 \ y_1 &= C_1x_1 + D_1u_1 \end{aligned}
ight., \quad \Sigma_2: \left\{ egin{aligned} rac{dx_2}{dt} &= A_2x_2 + B_2u_2 \ y_2 &= C_2x_2 + D_2u_2 \end{aligned}
ight.,$$

where $x_1(t) \in \mathbb{R}^{n_1}$, $x_2(t) \in \mathbb{R}^{n_2}$ are the state vectors, $u_1(t) \in \mathbb{R}$, $u_2(t) \in \mathbb{R}$ are the inputs, and $y_1(t) \in \mathbb{R}$, $y_2(t) \in \mathbb{R}$ are the outputs of the systems Σ_1 , Σ_2 , respectively. Furthermore, $A_1 \in \mathbb{R}^{n_1 \times n_1}$, $B_1 \in \mathbb{R}^{n_1 \times 1}$, $C_1 \in \mathbb{R}^{1 \times n_1}$, $D_1 \in \mathbb{R}$, $A_2 \in \mathbb{R}^{n_2 \times n_2}$, $B_2 \in \mathbb{R}^{n_2 \times 1}$, $C_2 \in \mathbb{R}^{1 \times n_2}$, and $D_2 \in \mathbb{R}$. Answer the following questions (i)-(v).

(i) Describe the state equation of the system with series connection shown in Fig. 1 when the input is u(t), the output is y(t), and the state vector is chosen as

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

(ii) Describe the state equation of the system with parallel connection shown in Fig. 2 when the input is u(t), the output is y(t), and the state vector is chosen as

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

(iii) In this subproblem, consider the system with series connection shown in Fig. 1 where Σ_1 and Σ_2 are given by

$$A_1 = 1, B_1 = 1, C_1 = 1, D_1 = 0, A_2 = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}, B_2 = \begin{bmatrix} 1 \\ k \end{bmatrix}, C_2 = \begin{bmatrix} 1 & 2 \end{bmatrix}, D_2 = 0,$$

and k is a real constant. Check the observability of the system. Let the initial condition of Σ_1 be given as $x_1(0) = 3$. Suppose that the output y(t) of the system becomes identically 0 when the input u(t) is identically 0 and the initial condition $x_2(0)$ of Σ_2 is appropriately selected. Determine k and $x_2(0)$.

(iv) It is known that the system Σ_1 is observable if and only if the matrix

$$\begin{bmatrix} C_1 \\ C_1 A_1 \\ \vdots \\ C_1 A_1^{n_1 - 1} \end{bmatrix}$$

is nonsingular. Prove that this condition is equivalent to the statement that any eigenvector $z \neq 0$ of A_1 satisfies $C_1 z \neq 0$.

(v) Assume that the systems Σ_1 and Σ_2 are observable. Prove that the state equation derived in (ii) is observable if and only if the matrices A_1 and A_2 share no common eigenvalues.