5

単原子分子からなる古典的な理想気体の熱平衡状態において分子の速度を \vec{v} 、その x 成分、y 成分、z 成分をそれぞれ v_x 、 v_y 、 v_z とする.この時,速度の x 成分が v_x と $v_x + dv_x$ の間にある確率が,その y 成分 v_y 、z 成分 v_z によらず $f(v_x)dv_x$ によって与えられるとする.同様に,速度の y 成分が v_y と $v_y + dv_y$ の間にある確率,z 成分が v_z と $v_z + dv_z$ の間にある確率が,それぞれ, $f(v_y)dv_y$, $f(v_z)dv_z$ によって,与えられるとする.更に,速度の x 成分が v_x と $v_x + dv_x$ の間にあると同時に,y 成分が v_y と $v_y + dv_y$ との間にあり,z 成分が v_z と $v_z + dv_z$ との間にある確率は,

$$f(v_x)f(v_y)f(v_z)dv_xdv_ydv_z = g(v^2)dv_xdv_ydv_z$$

と書けるとする. 但し, f と g はなめらかな関数であり, 分子の速さを $v=|\vec{v}|=\sqrt{v_x^2+v_y^2+v_z^2}$ とする. 以下の問いに答えよ.

(i) 次式が成立することを示せ.

$$\frac{1}{2v_x}\frac{f'(v_x)}{f(v_x)} = \frac{1}{2v_y}\frac{f'(v_y)}{f(v_y)} = \frac{1}{2v_z}\frac{f'(v_z)}{f(v_z)} = \frac{g'(v^2)}{g(v^2)}.$$

(ii) 次式が成立することを示せ、但し、 α は正の定数とする.

$$f(v_x) = \sqrt{\frac{\alpha}{\pi}} e^{-\alpha v_x^2}, \quad f(v_y) = \sqrt{\frac{\alpha}{\pi}} e^{-\alpha v_y^2}, \quad f(v_z) = \sqrt{\frac{\alpha}{\pi}} e^{-\alpha v_z^2}.$$

- (iii) 分子の速さが、 $v \geq v + dv$ との間にある確率 F(v)dv を求めよ.
- (iv) (iii) の確率密度関数 F(v) が極大値となる最も確からしい速度 (most probable speed) v_0 を求めよ.
- (v) 平均二乗速度 $(root\ mean\ square\ speed)$ v_s を求めよ. 但し、平均二乗速度とは「速さの二乗平均の平方根」のことである.

An English Translation:

Physical Statistics

5

Let v be the speed of a particle in a classical ideal monoatomic gas in thermal equilibrium, and let v_x, v_y and v_z , respectively, denote the velocity components in the x, y and z directions. Let us denote the probabilities of gas molecules with the velocity components between v_x and $v_x + dv_x$, v_y and $v_y + dv_y$, and v_z and $v_z + dv_z$, by $f(v_x)dv_x$, $f(v_y)dv_y$, and $f(v_z)dv_z$, respectively. Let us assume that the probability of gas molecules having the velocity components between v_x and $v_x + dv_x$, v_y and $v_y + dv_y$, and v_z and $v_z + dv_z$, simultaneously is given by

$$f(v_x)f(v_y)f(v_z)dv_xdv_ydv_z = g(v^2)dv_xdv_ydv_z,$$

where f and g are smooth functions and $v = \sqrt{v_x^2 + v_y^2 + v_z^2}$. Answer the following questions.

(i) Show that the following relation holds:

$$\frac{1}{2v_x}\frac{f'(v_x)}{f(v_x)} = \frac{1}{2v_y}\frac{f'(v_y)}{f(v_y)} = \frac{1}{2v_z}\frac{f'(v_z)}{f(v_z)} = \frac{g'(v^2)}{g(v^2)}.$$

(ii) Show that the following relations hold:

$$f(v_x) = \sqrt{\frac{\alpha}{\pi}} e^{-\alpha v_x^2}, \quad f(v_y) = \sqrt{\frac{\alpha}{\pi}} e^{-\alpha v_y^2}, \quad f(v_z) = \sqrt{\frac{\alpha}{\pi}} e^{-\alpha v_z^2},$$

where α is a positive constant.

- (iii) Obtain the probability F(v)dv of the speed being between v and v + dv.
- (iv) Obtain the most probable speed v_0 such that the probability density F(v) given in (iii) has a maximum at the speed $v = v_0$.
- (v) Obtain the root mean square speed v_s .