基礎数学 II

6

以下の問いに答えよ。
（i） 4×4 行列

$$
A=\left(\begin{array}{rrrr}
-1 & 1 & 2 & 1 \\
4 & 1 & 3 & -1 \\
-7 & 2 & 3 & 4 \\
11 & -1 & 0 & -5
\end{array}\right)
$$

のランク（階数）r を求め， $\operatorname{rank} B=r$ なる適当な $4 \times r$ 行列 $B, ~ r a n k ~ C=r$ なる $r \times 4$ 行列 C への分解 $A=B C$ を計算せよ．
（ii）n 本の m 次元列ベクトル $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$ からなる $m \times n$ 行列

$$
A=\left(\begin{array}{cccc}
& & & \\
a_{1} & a_{2} & \cdots & a_{n} \\
& & &
\end{array}\right)
$$

のランク r は $r<\min \{m, n\}$ であるものとする．このとき，行列 A は， $\operatorname{rank} B=r$ なる適当な $m \times r$ 行列 $B, ~ r a n k ~ C=r$ なる $r \times n$ 行列 C を用いて

$$
A=B C
$$

と分解されることを示せ。

An English Translation:

Basic Mathematics II

6

Answer the following questions.
(i) Find the rank r of the 4×4 matrix

$$
A=\left(\begin{array}{rrrr}
-1 & 1 & 2 & 1 \\
4 & 1 & 3 & -1 \\
-7 & 2 & 3 & 4 \\
11 & -1 & 0 & -5
\end{array}\right)
$$

and a decomposition of A into a product $A=B C$, where B is a suitable $4 \times r$ matrix of rank r and C is an $r \times 4$ matrix of rank r.
(ii) Let $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$ be n column vectors of dimension m and let the $m \times n$ matrix

$$
A=\left(\begin{array}{llll}
& & & \\
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \cdots & \boldsymbol{a}_{n} \\
& & &
\end{array}\right)
$$

be of rank r with $r<\min \{m, n\}$. Show that the matrix A can be decomposed into a product

$$
A=B C,
$$

where B is a suitable $m \times r$ matrix of rank r and C is an $r \times n$ matrix of rank r.

