基礎数学 I

1

 \overline{n} を正の整数とする.実数 $\beta_{k,n}$ および n 次多項式

$$b_{k,n}(x) = \frac{n!}{k!(n-k)!} x^k (1-x)^{n-k}, \quad k \in \{0, 1, 2, \dots, n\}$$

を用いて、高 q_n 次の多項式 $f_n(x)$ を

$$f_n(x) = \sum_{k=0}^{n} \beta_{k,n} b_{k,n}(x)$$

によって定める. このとき, 以下の問いに答えよ.

(i) 次の恒等式が成り立つことを示せ.

(a)
$$\sum_{k=0}^{n} b_{k,n}(x) = 1$$

(b)
$$\sum_{k=0}^{n} k b_{k,n}(x) = nx$$

(c)
$$\sum_{k=0}^{n} (k - nx)^2 b_{k,n}(x) = nx(1-x)$$

(ii) $\delta > 0$ および $x \in (0,1)$ に対して,

$$\sum_{\left|\frac{k}{n}-x\right| \ge \delta} b_{k,n}(x) \le \frac{1}{4n\delta^2}$$

が成り立つことを示せ、ここで和の記号は、 $\left|\frac{k}{n}-x\right| \ge \delta$ を満たす全ての k に対する和を表す。

(iii) f を区間 (0,1) 上の連続な実数値有界関数とし, $\beta_{k,n}=f(k/n)$ によって多項式列 $\{f_n(x)\}_{n=0}^\infty$ を定義する.このとき,任意の $\varepsilon>0$ に対して,ある正の整数 N で

$$|f(x) - f_n(x)| < \varepsilon \quad (n \ge N, x \in (0, 1))$$

を満たすものが存在することを示せ.

Basic Mathematics I

1

Let n be a positive integer. We introduce a polynomial of degree at most n by

$$f_n(x) = \sum_{k=0}^n \beta_{k,n} b_{k,n}(x),$$

where $\beta_{k,n} \in \mathbb{R}$ and the polynomial of degree n,

$$b_{k,n}(x) = \frac{n!}{k!(n-k)!} x^k (1-x)^{n-k},$$

for $k \in \{0, 1, 2, \dots, n\}$. Answer the following questions.

(i) Prove the following identities:

(a)
$$\sum_{k=0}^{n} b_{k,n}(x) = 1$$
,

(b)
$$\sum_{k=0}^{n} k b_{k,n}(x) = nx$$
,

(c)
$$\sum_{k=0}^{n} (k - nx)^2 b_{k,n}(x) = nx(1-x).$$

(ii) Show that

$$\sum_{\left|\frac{k}{n}-x\right| \ge \delta} b_{k,n}(x) \le \frac{1}{4n\delta^2}$$

for $\delta>0$ and $x\in(0,1),$ where the summation symbol denotes the sum over k satisfying $\left|\frac{k}{n}-x\right|\geqq\delta.$

(iii) Let f be a continuous real-valued bounded function on the interval (0,1). By $\beta_{k,n} = f(k/n)$, we define the polynomial sequence $\{f_n(x)\}_{n=0}^{\infty}$. Show that for any $\varepsilon > 0$ there exists a positive integer N such that

$$|f(x) - f_n(x)| < \varepsilon \quad (n \ge N, x \in (0, 1)).$$

アルゴリズム基礎

2

G=(V,E) を節点集合 V,枝集合 E から成る連結な単純無向グラフとし,G は隣接リストにより貯えられているとする.二点 $u,v\in V$ 間の路の最短の長さを $\mathrm{dist}(u,v)$ と記す.以下の問いに答えよ.

- (i) 任意の点 $s \in V$ を選ぶ. $\operatorname{dist}(s, u) = \operatorname{dist}(s, v)$ を満たす枝 $uv \in E$ が存在すれば、枝 uv は長さ奇数の単純閉路に含まれることを証明せよ.
- (ii) G が二部グラフであるかどうかを O(|V| + |E|) 時間で判定する方法を示せ.
- (iii) 異なる二点 $s,t \in V$ に対して,s,t 間の最短路が唯一であるかどうかを O(|V|+|E|) 時間で判定する方法を示せ.

Data Structures and Algorithms

Let G = (V, E) denote a simple connected undirected graph with a vertex set V and an edge set E. Assume that G is stored in adjacency lists. For two vertices $u, v \in V$, let $\operatorname{dist}(u, v)$ denote the shortest length of a path between them. Answer the following questions.

- (i) Let $s \in V$ be an arbitrary vertex. Prove that if there is an edge $uv \in E$ such that dist(s, u) = dist(s, v) then edge uv is contained in a simple cycle of an odd length.
- (ii) Show how to test whether G is a bipartite graph or not in O(|V| + |E|) time.
- (iii) Let $s, t \in V$ be two distinct vertices. Show how to test whether G has only one shortest path between s and t or not in O(|V| + |E|) time.

線形計画

3

 \mathbf{a}^i $(i=1,\ldots,n)$ と \mathbf{b} をm 次元ベクトル, $\mathbf{c}=(c_1,c_2,\ldots,c_n)^{\top}$ をn 次元ベクトルする. ただし $^{\top}$ は転置記号を表す. さらに, \mathbf{A} を第i 列が \mathbf{a}^i となる $m \times n$ 行列,つまり $\mathbf{A}=[\mathbf{a}^1 \ \mathbf{a}^2 \ \cdots \ \mathbf{a}^n]$ とする.

次の線形計画問題 (P) とその双対問題 (D) を考える.

(P) Minimize
$$\boldsymbol{c}^{\top}\boldsymbol{x}$$
 (D) Maximize $\boldsymbol{b}^{\top}\boldsymbol{w}$ subject to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ subject to $\boldsymbol{A}^{\top}\boldsymbol{w} \leq \boldsymbol{c}$

ただし, (P) の決定変数は $x \in \mathbb{R}^n$, (D) の決定変数は $w \in \mathbb{R}^m$ である.

問題 (P) は $x_1^* = 0$ となる唯一の最適解 $\boldsymbol{x}^* = (x_1^*, x_2^*, \dots, x_n^*)^\top$ を持つとする.このとき,次の線形計画問題 (Q) を考える.

(Q) Maximize
$$\boldsymbol{b}^{\top}\boldsymbol{u} - (\boldsymbol{c}^{\top}\boldsymbol{x}^{*})v$$

subject to $(\boldsymbol{a}^{1})^{\top}\boldsymbol{u} - c_{1}v \leq -1$
 $(\boldsymbol{a}^{i})^{\top}\boldsymbol{u} - c_{i}v \leq 0 \ (i = 2, 3, \dots, n)$
 $v \geq 0$

ただし、決定変数は $u \in \mathbb{R}^m$ と $v \in \mathbb{R}$ である.

以下の問いに答えよ.

- (i) 問題(Q)の双対問題を書け.
- (ii) 問題 (Q) が最適解を持つことを示せ.
- (iii) 問題 (Q) の最適値が 0 となることを示せ.
- (iv) 問題 (Q) は $v^* > 0$ となる最適解 (u^*, v^*) を持つとする. $w^* = \frac{u^*}{v^*}$ とする. このとき, w^* は双対問題 (D) の最適解であることを示せ.
- (v) 問題 (Q) は $v^* = 0$ となる最適解 (u^*, v^*) を持つとする.このとき,(a^1) $w^* < c_1$ となる (D) の最適解 w^* が存在することを示せ.

Linear Programming

3

Let \mathbf{a}^i (i = 1, ..., n) and \mathbf{b} be m-dimensional vectors, and let $\mathbf{c} = (c_1, c_2, ..., c_n)^{\top}$ be an n-dimensional vector, where the superscript $^{\top}$ denotes transposition. Moreover, let \mathbf{A} be an $m \times n$ matrix whose ith column is \mathbf{a}^i , that is, $\mathbf{A} = [\mathbf{a}^1 \ \mathbf{a}^2 \ \cdots \ \mathbf{a}^n]$.

Consider the following linear programming problem (P) and its dual problem (D):

(P) Minimize
$$c^{\top}x$$
 (D) Maximize $b^{\top}w$ subject to $Ax = b$ subject to $A^{\top}w \leq c$, $x \geq 0$,

where the decision variables of (P) and (D) are $\boldsymbol{x} \in \mathbb{R}^n$ and $\boldsymbol{w} \in \mathbb{R}^m$, respectively.

Suppose that problem (P) has a unique optimal solution $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)^{\top}$ such that $x_1^* = 0$. Then consider the following linear programming problem (Q):

(Q) Maximize
$$\boldsymbol{b}^{\top}\boldsymbol{u} - (\boldsymbol{c}^{\top}\boldsymbol{x}^{*})v$$

subject to $(\boldsymbol{a}^{1})^{\top}\boldsymbol{u} - c_{1}v \leq -1$
 $(\boldsymbol{a}^{i})^{\top}\boldsymbol{u} - c_{i}v \leq 0 \ (i = 2, 3, \dots, n)$
 $v \geq 0,$

where the decision variables are $\boldsymbol{u} \in \mathbb{R}^m$ and $v \in \mathbb{R}$.

Answer the following questions.

- (i) Write out a dual problem of problem (Q).
- (ii) Show that problem (Q) has an optimal solution.
- (iii) Show that an optimal value of problem (Q) is 0.
- (iv) Suppose that problem (Q) has an optimal solution (\boldsymbol{u}^*, v^*) such that $v^* > 0$. Let $\boldsymbol{w}^* = \frac{\boldsymbol{u}^*}{v^*}$. Then show that \boldsymbol{w}^* is an optimal solution to problem (D).
- (v) Suppose that problem (Q) has an optimal solution (\boldsymbol{u}^*, v^*) such that $v^* = 0$. Then show that problem (D) has an optimal solution \boldsymbol{w}^* such that $(\boldsymbol{a}^1)^{\top} \boldsymbol{w}^* < c_1$.

線形制御理論

4

図 1 はフィードバック制御系を示す.ここで P(s) は制御対象,C(s) は PI 補償器,r は参照入力,e は偏差である.制御対象 P(s) と補償器 C(s) は

$$P(s) = \frac{-s+2}{s^2+3s+2}, \quad C(s) = 1 + \frac{1}{Ts}$$

でそれぞれ与えられているとする.ただしT>0は積分時間である.以下の問いに答えよ.

- (i) フィードバック制御系が安定となる T の集合を求めよ.
- (ii) 参照入力を単位ランプ関数 , すなわち r(t)=t とする . T>0 を変化させるとき , 定常偏差の下限を求めよ .
- (iii) T=1 とする.ゲイン余裕と位相余裕をそれぞれ $g_m,\,\phi_m$ で表す.このとき g_m と $an\phi_m$ を計算せよ.

図 1 フィードバック制御系

Linear Control Theory

4

A feedback control system is shown in Figure 1, where P(s) is a plant, C(s) is a PI controller, r is a reference input, and e is an error. The plant P(s) and the controller C(s) are given by

$$P(s) = \frac{-s+2}{s^2+3s+2}, \quad C(s) = 1 + \frac{1}{Ts},$$

respectively, where T > 0 is the integration time. Answer the following questions.

- (i) Find the set of T for which the feedback control system is stable.
- (ii) Let the reference input be the unit ramp signal, that is, r(t) = t. Calculate the infimum of the steady state error when T > 0 varies.
- (iii) Let T=1. Denote the gain margin and the phase margin by g_m and ϕ_m , respectively. Calculate g_m and $\tan \phi_m$.

Figure 1 Feedback control system

基礎力学

5

ポテンシャル $V(r)=\frac{k}{r^n}$ $(k>0,n\geq 1)$ をもつ中心力による質量 m の粒子の散乱を考える。ここで,力の中心から粒子までの距離を r とし,r の最小値を r_0 ,力の中心のまわりの角運動量の大きさを h(>0) とし,無限遠方での粒子の速さを v_∞ とする.以下の問いに答えよ.

- (i) $r = r_0$ の時の粒子の速さ v_0 を求めよ.
- (ii) 散乱角 Θ が

$$\Theta = \pi - 2 \int_0^{u_0} \frac{du}{\sqrt{u_0^2 - u^2 + \frac{2m}{h^2} [V(\frac{1}{u_0}) - V(\frac{1}{u})]}}$$

で与えられることを示せ、但し、 $u=\frac{1}{r},\,u_0=\frac{1}{r_0}$ とする.

(iii) ポテンシャルが $V(r)=\frac{k}{r}$ (k>0) で与えられる場合の散乱の微分断面積を導出せよ.

Basic Mechanics

5

Let us consider a particle of mass m scattering under the action of a central force by a potential $V(r)=\frac{k}{r^n}$ $(k>0,n\geqq 1)$ where r denotes the distance between the particle and the center of the central force. Let r_0 be the minimal value of $r,\ h(>0)$ be the magnitude of the angular moment around the center of the central force and v_∞ be the speed of the particle at $r=\infty$. Answer the following questions.

- (i) Obtain the speed v_0 of the particle at $r = r_0$.
- (ii) Show that the scattering angle Θ is given by

$$\Theta = \pi - 2 \int_0^{u_0} \frac{du}{\sqrt{u_0^2 - u^2 + \frac{2m}{h^2} [V(\frac{1}{u_0}) - V(\frac{1}{u})]}}$$

where $u = \frac{1}{r}$ and $u_0 = \frac{1}{r_0}$.

(iii) Derive the scattering differential cross section in the case that $V(r) = \frac{k}{r}$ where k is a positive constant.

基礎数学 II

6

以下の問いに答えよ.

(i) 4×4行列

$$A = \begin{pmatrix} -1 & 1 & 2 & 1 \\ 4 & 1 & 3 & -1 \\ -7 & 2 & 3 & 4 \\ 11 & -1 & 0 & -5 \end{pmatrix}$$

のランク(階数)r を求め,rank B=r なる適当な $4\times r$ 行列 B,rank C=r なる $r\times 4$ 行列 C への分解 A=BC を計算せよ.

(ii) n 本の m 次元列ベクトル a_1, a_2, \ldots, a_n からなる $m \times n$ 行列

$$A = \left(egin{array}{cccc} oldsymbol{a}_1 & oldsymbol{a}_2 & \cdots & oldsymbol{a}_n \end{array}
ight)$$

のランク r は $r < \min\{m,n\}$ であるものとする.このとき,行列 A は,rank B = r なる適当な $m \times r$ 行列 B,rank C = r なる $r \times n$ 行列 C を用いて

$$A = BC$$

と分解されることを示せ.

Basic Mathematics II

6

Answer the following questions.

(i) Find the rank r of the 4×4 matrix

$$A = \begin{pmatrix} -1 & 1 & 2 & 1 \\ 4 & 1 & 3 & -1 \\ -7 & 2 & 3 & 4 \\ 11 & -1 & 0 & -5 \end{pmatrix}$$

and a decomposition of A into a product A = BC, where B is a suitable $4 \times r$ matrix of rank r and C is an $r \times 4$ matrix of rank r.

(ii) Let a_1, a_2, \ldots, a_n be n column vectors of dimension m and let the $m \times n$ matrix

$$A = \left(egin{array}{cccc} oldsymbol{a}_1 & oldsymbol{a}_2 & \cdots & oldsymbol{a}_n \end{array}
ight)$$

be of rank r with $r < \min\{m, n\}$. Show that the matrix A can be decomposed into a product

$$A = BC$$
.

where B is a suitable $m \times r$ matrix of rank r and C is an $r \times n$ matrix of rank r.

応用数学

1

i を虚数単位とする. f(z) を,K 個の整数ではない複素数 a_1,a_2,\ldots,a_K を除いて正則な複素関数とする. $k=1,\ldots,K$ に対して, a_k は f(z) の一位の極で,その留数を A_k とし, $\lim_{z\to\infty}zf(z)=0$ とする. $N>\max_{k=1,\ldots,K}|a_k|$ を満たす自然数 N に対し, Γ_N を $N+\frac{1}{2}+Ni,-N-\frac{1}{2}+Ni,-N-\frac{1}{2}-Ni$ をこの順に結んでできる長方形の経路とする.以下の問いに答えよ.

(i) N によらない実数 M が存在して, Γ_N 上の z に対して,

$$|\cot \pi z| < M$$

が成り立つことを示せ、ただし、 $\cot w = \frac{1}{\tan w}$ である.

(ii) 次式を示せ.

$$\lim_{N \to \infty} \int_{\Gamma_N} f(z) \cot \pi z dz = 0.$$

(iii) 次式を示せ.

$$\sum_{n=-\infty}^{\infty} f(n) = -\pi \sum_{k=1}^{K} A_k \cot \pi a_k.$$

(iv) c を 0 でない実数とする. 次式を示せ.

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + c^2} = \frac{\pi}{2c} \frac{e^{\pi c} + e^{-\pi c}}{e^{\pi c} - e^{-\pi c}} - \frac{1}{2c^2}.$$

Applied Mathematics

1

Let i be the imaginary unit. Let f(z) be a complex function which is holomorphic except at K non-integer, complex numbers a_1, a_2, \ldots, a_K . Assume that a_k is a pole of order one and the residue of f(z) at a_k is A_k for $k=1,\ldots,K$. Assume that $\lim_{z\to\infty}zf(z)=0$. For a positive integer N satisfying $N>\max_{k=1,\ldots,K}|a_k|$, let Γ_N be the rectangular path connecting $N+\frac{1}{2}+Ni,-N-\frac{1}{2}+Ni,-N-\frac{1}{2}-Ni$ and $N+\frac{1}{2}-Ni$ in this order. Answer the following questions.

(i) Show that there is a real number M independent of N such that

$$|\cot \pi z| < M$$

holds for any z on Γ_N . Here $\cot w = \frac{1}{\tan w}$.

(ii) Show that

$$\lim_{N \to \infty} \int_{\Gamma_N} f(z) \cot \pi z dz = 0.$$

(iii) Show that

$$\sum_{n=-\infty}^{\infty} f(n) = -\pi \sum_{k=1}^{K} A_k \cot \pi a_k.$$

(iv) Let c be a non-zero real number. Show that

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + c^2} = \frac{\pi}{2c} \frac{e^{\pi c} + e^{-\pi c}}{e^{\pi c} - e^{-\pi c}} - \frac{1}{2c^2}.$$

グラフ理論

2

G=(V,E) を節点集合 V,枝集合 E から成る連結な単純無向グラフとし,各枝 $e\in E$ には実数値の重み w(e) が与えられているとする. G の全域木 $T\subseteq E$ に対して,補木の 枝 $a\in E\setminus T$ を含む T の基本閉路を $C_T(a)$,木の枝 $b\in T$ を含む T の基本カットセットを $K_T(b)$ と書く.以下の問いに答えよ.

(i) G の全域木 $T\subseteq E$ が最小木であるとき、次の条件 (C) が成り立つことを証明せよ。 条件 (C): 補木の任意の枝 $a\in E\setminus T$ とその基本閉路の各枝 $b\in C_T(a)$ に対して

$$w(a) \ge w(b)$$

が成り立つ.

(ii) 条件 (C) を満たす任意の全域木T は次の条件 (K) を満たすことを証明せよ. 条件 (K): 全域木T の任意の枝 $b \in T$ とその基本カットセットの各枝 $a \in K_T(b)$ に対して

$$w(a) \ge w(b)$$

が成り立つ.

- (iii) G の全域木 $T \subseteq E$ に対して条件 (K) が成り立つとき,T は最小木であることを証明せよ.
- (iv) 次の命題が真であれば証明を、偽であれば反例を与えよ. 「G が最小木を二つ持つとき、G には同じ重みを持つ枝が少なくとも 2 本存在する.」

Graph Theory

2

Let G = (V, E) denote a simple and connected undirected graph with a vertex set V and an edge set E such that each edge $e \in E$ is weighted by a real value w(e). For a spanning tree $T \subseteq E$ of G, let $C_T(a)$ denote the fundamental cycle containing an edge $a \in E \setminus T$, and $K_T(b)$ denote the fundamental cut-set containing an edge $b \in T$. Answer the following questions.

- (i) Prove that every minimum spanning tree $T \subseteq E$ of G satisfies the next condition (C).
 - (C): For every edge $a \in E \setminus T$, each edge $b \in C_T(a)$ satisfies $w(a) \geq w(b)$.
- (ii) Prove that any spanning tree T satisfying condition (C) also satisfies the next condition (K).
 - (K): For every edge $b \in T$, each edge $a \in K_T(b)$ satisfies $w(a) \geq w(b)$.
- (iii) Prove that any spanning tree $T\subseteq E$ of G satisfying condition (K) is a minimum spanning tree.
- (iv) Prove or disprove the next proposition, giving a proof or a counterexample. "When G has two minimum spanning trees, some two edges in G have the same weight."

3

以下の問(i),(ii)に答えよ.

(i) 次の非線形計画問題を考える.

(P) Maximize
$$\theta(x)$$
 subject to $x \in X$

ただし,(P) の決定変数は $x \in \mathbb{R}^n$ であり, $\theta: \mathbb{R}^n \to \mathbb{R}$ と $X \subseteq \mathbb{R}^n$ は以下のように定義された目的関数と実行可能領域である.

$$\theta(\boldsymbol{x}) = \left(\prod_{i=1}^n x_i\right)^{1/n}, \qquad X = \left\{\boldsymbol{x} \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = 1, \ x_i \ge 0 \ (i = 1, \dots, n)\right\}$$

問題 (P) は唯一の最適解 x^* を持ち、関数 θ は \mathbb{R}^n_{++} 上で凹関数 (すなわち、 $-\theta$ は凸関数) であることが知られている。ただし、 $\mathbb{R}^n_{++} = \{x \in \mathbb{R}^n \mid x_i > 0 \ (i=1,\ldots,n)\}$ である. 以下の (a), (b), (c) に答えよ.

- (a) 問題 (P) のカルーシュ・キューン・タッカー条件 (Karush-Kuhn-Tucker 条件) を書け. (問題 (P) が最大化問題であることに注意すること.)
- (b) 問題 (P) の最適解 x* を求めよ.
- (c) $\gamma_i \in \mathbb{R}$, $\gamma_i \ge 0$ (i = 1, ..., n) とする. 問題 (P) の最適解 \mathbf{x}^* を利用して,以下の算術幾何平均の不等式が成り立つことを示せ.

$$\frac{1}{n}\sum_{i=1}^{n}\gamma_{i} \ge \left(\prod_{i=1}^{n}\gamma_{i}\right)^{1/n}$$

- (ii) 正の整数 n に対して, \mathcal{F}_n を \mathbb{R}^n から \mathbb{R} への非負の凸関数の集合とする.以下の (A),(B) に答えよ.
- (A) $f \in \mathcal{F}_n$ が与えられたとき、関数 $g_f: \mathbb{R}^n \to \mathbb{R}$ を $g_f(\boldsymbol{x}) = f(\boldsymbol{x})^2$ ($\boldsymbol{x} \in \mathbb{R}^n$) と定義する. そのとき、任意の $f \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$ に対して、 g_f が凸関数であることを示せ.
- (B) 正の数 $\alpha \in \mathbb{R}$ と $f \in \mathcal{F}_n$ が与えられたとき,関数 $h_{f,\alpha}:\mathbb{R}^n \to \mathbb{R}$ を $h_{f,\alpha}(\boldsymbol{x}) = f(\boldsymbol{x})^{\alpha}$ ($\boldsymbol{x} \in \mathbb{R}^n$) と定義する.そのとき,すべての $\alpha \geq \alpha^*$ と $f \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$ に対して, $h_{f,\alpha}$ が凸関数であるような最小な $\alpha^* \in \mathbb{R}$ を求めよ.その際, α^* が最小であることを示せ.

Operations Research

3

Answer the following questions (i) and (ii).

- (i) Consider the following nonlinear programming problem:
 - (P) Maximize $\theta(x)$ subject to $x \in X$,

where the decision variable is $\boldsymbol{x} \in \mathbb{R}^n$, the objective function $\theta \colon \mathbb{R}^n \to \mathbb{R}$ and the feasible set $X \subseteq \mathbb{R}^n$ are defined by

$$\theta(\boldsymbol{x}) = \left(\prod_{i=1}^n x_i\right)^{1/n} \quad \text{and} \quad X = \left\{\boldsymbol{x} \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = 1, \ x_i \ge 0 \ (i = 1, \dots, n)\right\},$$

respectively. It is known that the optimal solution \boldsymbol{x}^* of (P) is unique, and that the function θ is concave (that is, $-\theta$ is convex) on $\mathbb{R}^n_{++} = \{\boldsymbol{x} \in \mathbb{R}^n \mid x_i > 0 \ (i = 1, ..., n)\}$. Answer the following questions (a), (b) and (c).

- (a) Write out the Karush-Kuhn-Tucker conditions of (P). (Note that (P) is a maximization problem.)
- (b) Obtain the optimal solution x^* of (P).
- (c) By using the solution \mathbf{x}^* of (P), show that for all $\gamma_i \in \mathbb{R}$ with $\gamma_i \geq 0$ (i = 1, ..., n), the inequality of arithmetic and geometric means holds, that is,

$$\frac{1}{n}\sum_{i=1}^{n}\gamma_{i} \ge \left(\prod_{i=1}^{n}\gamma_{i}\right)^{1/n}.$$

- (ii) Let n be a positive integer number and \mathcal{F}_n be the set of all convex and nonnegative functions from \mathbb{R}^n to \mathbb{R} . Answer the following questions (A) and (B).
- (A) For a given function $f \in \mathcal{F}_n$, define $g_f \colon \mathbb{R}^n \to \mathbb{R}$ as $g_f(\boldsymbol{x}) = f(\boldsymbol{x})^2$ ($\boldsymbol{x} \in \mathbb{R}^n$). Prove that g_f is convex for all $f \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$.
- (B) For a given positive number $\alpha \in \mathbb{R}$ and a function $f \in \mathcal{F}_n$, define $h_{f,\alpha} \colon \mathbb{R}^n \to \mathbb{R}$ as $h_{f,\alpha}(\boldsymbol{x}) = f(\boldsymbol{x})^{\alpha} \ (\boldsymbol{x} \in \mathbb{R}^n)$. Obtain the minimum value of $\alpha^* \in \mathbb{R}$ such that $h_{f,\alpha}$ is convex for all $\alpha \geq \alpha^*$ and $f \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$. Justify your answer.

現代制御論

4

状態方程式

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t), \ x(0) = x_0, \ y(t) = Cx(t)$$

により与えられる線形システムを考える.ただし, $x(t)\in\mathbb{R}^3$ は状態, $u(t)\in\mathbb{R}$ は制御入力, $y(t)\in\mathbb{R}$ は観測出力, $x_0\in\mathbb{R}^3$ は初期状態である.また,

$$A = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 1 & 1 \\ -3 & 3 & -2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$$

とし, \mathbb{R}^3 の二つの線形部分空間を

$$\mathcal{O} = \{x_0 :$$
任意の t に対して $u(t) = 0$ ならば , 任意の t に対して $y(t) = 0\}$

および

$$\mathcal{C} = \{ \begin{bmatrix} B & AB & A^2B \end{bmatrix} v : v \in \mathbb{R}^3 \}$$

により定義する. 以下の問いに理由とともに答えよ.

- (i) \mathcal{O} の基底および \mathcal{C} の基底をそれぞれ一つ求めよ.
- (ii) 線形独立なベクトルの組 $e_1,\ e_2,\ e_3\in\mathbb{R}^3$ で $e_1\in\mathcal{O}$ かつ $e_2\in\mathcal{C}$ を満たすものを一つ求めよ.また , $T=\begin{bmatrix}e_1&e_2&e_3\end{bmatrix}\in\mathbb{R}^{3\times3}$ に対して , Tz(t)=x(t) で与えられる z(t) を状態変数としてもつ座標変換された状態方程式を求めよ.

$$(iii)$$
 $x_0 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ に対して,

$$J(u) = \int_0^\infty (y(t)^2 + u(t)^2)dt$$

を最小化するu(t)を求めよ.

Modern Control Theory

4

Consider a linear dynamical system given by the state equation

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t), \ x(0) = x_0, \ y(t) = Cx(t)$$

where $x(t) \in \mathbb{R}^3$ is a state vector, $u(t) \in \mathbb{R}$ is a control input, $y(t) \in \mathbb{R}$ is an observation output, and $x_0 \in \mathbb{R}^3$ is an initial state. Let

$$A = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 1 & 1 \\ -3 & 3 & -2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}.$$

Define two linear subspaces of \mathbb{R}^3 by

$$\mathcal{O} = \{x_0 : y(t) = 0 \text{ for all } t \text{ if } u(t) = 0 \text{ for all } t\}$$

and

$$\mathcal{C} = \{ \begin{bmatrix} B & AB & A^2B \end{bmatrix} v : v \in \mathbb{R}^3 \}.$$

Answer the following questions. Show the derivation process.

- (i) Obtain a basis of \mathcal{O} and a basis of \mathcal{C} .
- (ii) Find a triplet of linearly independent vectors e_1 , e_2 , $e_3 \in \mathbb{R}^3$ such that $e_1 \in \mathcal{O}$ and $e_2 \in \mathcal{C}$. Then, obtain the coordinate transformed state equation having the state vector z(t) such that Tz(t) = x(t) with $T = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \in \mathbb{R}^{3\times 3}$.
- (iii) For $x_0 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, find u(t) that minimizes

$$J(u) = \int_0^\infty (y(t)^2 + u(t)^2) dt.$$

物理統計学

5

時系列 X_0,X_1,\dots は区間 (-1,1) 上の確率測度 $\mu(dx)=\frac{dx}{\pi\sqrt{1-x^2}}$ を不変測度とするエルゴード的な力学系 $X_{n+1}=2X_n^2-1$ により決定されるものとする. さらに

$$\int_{-1}^{1} |B(x)|^2 \mu(dx) < \infty$$

を満足する任意の観測関数 B(x) に対して,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} B(X_i) = \int_{-1}^{1} B(X_0) \mu(dX_0) \quad \text{a.e.}$$

が成立するものとする. 但し, $X_i \in (-1,1)$ $(i \ge 0)$ である. $\langle B \rangle$ は初期値 $X_0 = \cos(\theta_0)$ が不変測度 $\mu(dx)$ に従って分布する時の積分 $\int_{-1}^1 B(X_0) \mu(dX_0)$ と定義する. 以下の問いに答えよ.

- (i) B(x) = x の時, $\langle B \rangle = 0$ 及び $\langle B^2 \rangle = \frac{1}{2}$ であることを示せ.
- (ii) $B(x) = 2x^2 1$ の時, $\langle B \rangle = 0$ 及び $\langle B^2 \rangle = \frac{1}{2}$ であることを示せ.
- (iii) $B(x) = (2x^2 1)x$ の時, $\langle B \rangle = 0$ であることを示せ.
- (iv) X_n の一般解を与えよ.
- (v) $B(x) = a_0 + a_1 x + a_2 (2x^2 1)$ の時, $\langle B \rangle = a_0$ 及び $\langle B^2 \rangle \langle B \rangle^2 = \frac{1}{2} (a_1^2 + a_2^2)$ であることを示せ.
- (vi) $B(x) = a_0 + a_1 x + a_2 (2x^2 1)$ に対して、1 次元ランダムウォークを

$$r(N) \equiv \sum_{i=0}^{N-1} \{B(X_i) - \langle B \rangle\}$$
 $N = 1, 2, \dots$

で構成した時、その拡散係数 $D \equiv \lim_{N \to \infty} \frac{\langle r^2(N) \rangle}{2N}$ を求めよ.

Physical Statistics

5

Let a time series X_0, X_1, \ldots be determined by an ergodic dynamical system $X_{n+1} = 2X_n^2 - 1$ with a probability measure $\mu(dx) = \frac{dx}{\pi\sqrt{1-x^2}}$ on the interval (-1,1) being the invariant measure and assume that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} B(X_i) = \int_{-1}^1 B(X_0) \mu(dX_0) \quad \text{a.e.}$$

for any function B(x) satisfying

$$\int_{-1}^{1} |B(x)|^2 \mu(dx) < \infty,$$

where $X_i \in (-1,1)$ $(i \ge 0)$. $\langle B \rangle$ is defined as the integral $\int_{-1}^{1} B(X_0) \mu(dX_0)$ with an initial condition $X_0 = \cos(\theta_0)$ being distributed according to the invariant measure $\mu(dx)$. Answer the following questions:

- (i) Show that $\langle B \rangle = 0$ and $\langle B^2 \rangle = \frac{1}{2}$ for B(x) = x.
- (ii) Show that $\langle B \rangle = 0$ and $\langle B^2 \rangle = \frac{1}{2}$ for $B(x) = 2x^2 1$.
- (iii) Show that $\langle B \rangle = 0$ for $B(x) = (2x^2 1)x$.
- (iv) Give a general solution X_n
- (v) Show that $\langle B^2 \rangle \langle B \rangle^2 = \frac{1}{2}(a_1^2 + a_2^2)$ for $B(x) = a_0 + a_1 x + a_2(2x^2 1)$.
- (vi) Let us construct a one-dimensional random walk defined by

$$r(N) \equiv \sum_{i=0}^{N-1} \{B(X_i) - \langle B \rangle\} \quad N = 1, 2, \dots$$

for $B(x) = a_0 + a_1 x + a_2 (2x^2 - 1)$. Obtain the diffusion coefficient $D \equiv \lim_{N \to \infty} \frac{\langle r^2(N) \rangle}{2N}$.

力学系数学

6

 $a,b \in \mathbb{R}$ を定数として次の実微分方程式を考える.

$$t\frac{d^2x}{dt^2} + (at+b)\frac{dx}{dt} + x = 0 \tag{1}$$

X を t の有理関数,式 (1) の解およびそれらの高階導関数の有理式全体からなる集合とする.特に,X は式 (1) の任意の解の 2 階導関数を含む.次の条件を満たす全単射写像 $\sigma: X \to X$ 全体の集合を G で表す.

- (A1) 任意の $f,g \in X$ に対して $\sigma(f+g) = \sigma(f) + \sigma(g)$ および $\sigma(fg) = \sigma(f)\sigma(g)$ が成立
- (A2) 任意の有理関数 f に対して $\sigma(f) = f$ が成立
- (A3) 任意の $f \in X$ に対して $\frac{d}{dt}\sigma(f) = \sigma\left(\frac{df}{dt}\right)$ が成立

 $x = e^t$ が式 (1) の解であるとき、以下の問いに答えよ.

- (i) 定数 *a*, *b* を定めよ.
- (ii) $x = e^t$ と 1 次独立な解 $x = \phi(t)$ を一つ求めよ.
- (iii) x(t) が解のとき $\sigma(x(t))$ も解であることを示せ.
- (iv) $\phi(t)$ を (ii) で求めた解とする. (iii) により、任意の $\sigma \in G$ に対して、ある定数 $a_{ij}(\sigma) \in \mathbb{R}$ (i,j=1,2) が存在して

$$\sigma(e^t) = a_{11}(\sigma)e^t + a_{12}(\sigma)\phi(t), \quad \sigma(\phi(t)) = a_{21}(\sigma)e^t + a_{22}(\sigma)\phi(t)$$

が成立する. 各 i,j=1,2 に対して (i,j) 成分が $a_{ij}(\sigma)$ の 2 次正方行列を $A(\sigma)$ と表す. このとき,任意の $\sigma_1,\sigma_2\in G$ に対して $A(\sigma_1)A(\sigma_2)=A(\sigma_2)A(\sigma_1)$ が成立することを示せ.

Mathematics for Dynamical Systems

6

Let $a, b \in \mathbb{R}$ be constants and consider the real differential equation

$$t\frac{d^2x}{dt^2} + (at+b)\frac{dx}{dt} + x = 0.$$

$$\tag{1}$$

Let X be the set of all rational expressions of rational functions of t, solutions to equation (1) and their derivatives of any order. In particular, X contains the second-order derivative of any solution to equation (1). Let $\sigma: X \to X$ be a bijective map satisfying the following conditions:

- (A1) For any $f, g \in X$, $\sigma(f+g) = \sigma(f) + \sigma(g)$ and $\sigma(fg) = \sigma(f)\sigma(g)$;
- (A2) For any rational function f, $\sigma(f) = f$;

(A3) For any
$$f \in X$$
, $\frac{d}{dt}\sigma(f) = \sigma\left(\frac{df}{dt}\right)$.

Let G denote the set of all such maps. Assume that $x = e^t$ is a solution to equation (1). Answer the following questions.

- (i) Determine the constants a and b.
- (ii) Obtain a solution $x = \phi(t)$ which is linearly independent of $x = e^t$.
- (iii) Show that $\sigma(x(t))$ is a solution if x(t) is so.
- (iv) Let $\phi(t)$ be the solution obtained in (ii). From (iii) we see that for any $\sigma \in G$ there exist some constants $a_{ij}(\sigma) \in \mathbb{R}$ (i, j = 1, 2) such that

$$\sigma(e^t) = a_{11}(\sigma)e^t + a_{12}(\sigma)\phi(t), \quad \sigma(\phi(t)) = a_{21}(\sigma)e^t + a_{22}(\sigma)\phi(t).$$

Let $A(\sigma)$ be a 2×2 matrix whose (i, j)-element is $a_{ij}(\sigma)$ for i, j = 1, 2. Then show that $A(\sigma_1)A(\sigma_2) = A(\sigma_2)A(\sigma_1)$ for any $\sigma_1, \sigma_2 \in G$.