線形計画

3

 \mathbf{a}^i $(i=1,\ldots,n)$ と \mathbf{b} をm 次元ベクトル, $\mathbf{c}=(c_1,c_2,\ldots,c_n)^{\top}$ をn 次元ベクトルする. ただし $^{\top}$ は転置記号を表す. さらに, \mathbf{A} を第i 列が \mathbf{a}^i となる $m \times n$ 行列,つまり $\mathbf{A}=[\mathbf{a}^1 \ \mathbf{a}^2 \ \cdots \ \mathbf{a}^n]$ とする.

次の線形計画問題 (P) とその双対問題 (D) を考える.

(P) Minimize
$$\boldsymbol{c}^{\top}\boldsymbol{x}$$
 (D) Maximize $\boldsymbol{b}^{\top}\boldsymbol{w}$ subject to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ subject to $\boldsymbol{A}^{\top}\boldsymbol{w} \leq \boldsymbol{c}$

ただし, (P) の決定変数は $x \in \mathbb{R}^n$, (D) の決定変数は $w \in \mathbb{R}^m$ である.

問題 (P) は $x_1^* = 0$ となる唯一の最適解 $\boldsymbol{x}^* = (x_1^*, x_2^*, \dots, x_n^*)^\top$ を持つとする.このとき,次の線形計画問題 (Q) を考える.

(Q) Maximize
$$\boldsymbol{b}^{\top}\boldsymbol{u} - (\boldsymbol{c}^{\top}\boldsymbol{x}^{*})v$$

subject to $(\boldsymbol{a}^{1})^{\top}\boldsymbol{u} - c_{1}v \leq -1$
 $(\boldsymbol{a}^{i})^{\top}\boldsymbol{u} - c_{i}v \leq 0 \ (i = 2, 3, \dots, n)$
 $v \geq 0$

ただし、決定変数は $\mathbf{u} \in \mathbb{R}^m$ と $v \in \mathbb{R}$ である.

以下の問いに答えよ.

- (i) 問題(Q)の双対問題を書け.
- (ii) 問題 (Q) が最適解を持つことを示せ.
- (iii) 問題(Q)の最適値が0となることを示せ.
- (iv) 問題 (Q) は $v^* > 0$ となる最適解 (u^*, v^*) を持つとする. $w^* = \frac{u^*}{v^*}$ とする. このとき, w^* は双対問題 (D) の最適解であることを示せ.
- (v) 問題 (Q) は $v^* = 0$ となる最適解 (u^*, v^*) を持つとする.このとき,(a^1) $^\top w^* < c_1$ となる (D) の最適解 w^* が存在することを示せ.

An English Translation:

Linear Programming

3

Let \mathbf{a}^i (i = 1, ..., n) and \mathbf{b} be m-dimensional vectors, and let $\mathbf{c} = (c_1, c_2, ..., c_n)^{\top}$ be an n-dimensional vector, where the superscript $^{\top}$ denotes transposition. Moreover, let \mathbf{A} be an $m \times n$ matrix whose ith column is \mathbf{a}^i , that is, $\mathbf{A} = [\mathbf{a}^1 \ \mathbf{a}^2 \ \cdots \ \mathbf{a}^n]$.

Consider the following linear programming problem (P) and its dual problem (D):

(P) Minimize
$$c^{\top}x$$
 (D) Maximize $b^{\top}w$ subject to $Ax = b$ subject to $A^{\top}w \leq c$, $x \geq 0$,

where the decision variables of (P) and (D) are $\boldsymbol{x} \in \mathbb{R}^n$ and $\boldsymbol{w} \in \mathbb{R}^m$, respectively.

Suppose that problem (P) has a unique optimal solution $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)^{\top}$ such that $x_1^* = 0$. Then consider the following linear programming problem (Q):

(Q) Maximize
$$\boldsymbol{b}^{\top}\boldsymbol{u} - (\boldsymbol{c}^{\top}\boldsymbol{x}^{*})v$$

subject to $(\boldsymbol{a}^{1})^{\top}\boldsymbol{u} - c_{1}v \leq -1$
 $(\boldsymbol{a}^{i})^{\top}\boldsymbol{u} - c_{i}v \leq 0 \ (i = 2, 3, \dots, n)$
 $v \geq 0,$

where the decision variables are $\boldsymbol{u} \in \mathbb{R}^m$ and $v \in \mathbb{R}$.

Answer the following questions.

- (i) Write out a dual problem of problem (Q).
- (ii) Show that problem (Q) has an optimal solution.
- (iii) Show that an optimal value of problem (Q) is 0.
- (iv) Suppose that problem (Q) has an optimal solution (\boldsymbol{u}^*, v^*) such that $v^* > 0$. Let $\boldsymbol{w}^* = \frac{\boldsymbol{u}^*}{v^*}$. Then show that \boldsymbol{w}^* is an optimal solution to problem (D).
- (v) Suppose that problem (Q) has an optimal solution (\boldsymbol{u}^*, v^*) such that $v^* = 0$. Then show that problem (D) has an optimal solution \boldsymbol{w}^* such that $(\boldsymbol{a}^1)^{\top} \boldsymbol{w}^* < c_1$.