3

以下の問(i),(ii)に答えよ.

(i) 次の非線形計画問題を考える.

(P) Maximize
$$\theta(x)$$
 subject to $x \in X$

ただし,(P) の決定変数は $x \in \mathbb{R}^n$ であり, $\theta: \mathbb{R}^n \to \mathbb{R}$ と $X \subseteq \mathbb{R}^n$ は以下のように定義された目的関数と実行可能領域である.

$$\theta(\boldsymbol{x}) = \left(\prod_{i=1}^n x_i\right)^{1/n}, \qquad X = \left\{\boldsymbol{x} \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = 1, \ x_i \ge 0 \ (i = 1, \dots, n)\right\}$$

問題 (P) は唯一の最適解 x^* を持ち,関数 θ は \mathbb{R}^n_{++} 上で凹関数 (すなわち, $-\theta$ は凸関数) であることが知られている.ただし, $\mathbb{R}^n_{++} = \{x \in \mathbb{R}^n \mid x_i > 0 \ (i=1,\ldots,n)\}$ である.以下の (a),(b),(c) に答えよ.

- (a) 問題 (P) のカルーシュ・キューン・タッカー条件 (Karush-Kuhn-Tucker 条件) を書け. (問題 (P) が最大化問題であることに注意すること.)
- (b) 問題 (P) の最適解 x* を求めよ.
- (c) $\gamma_i \in \mathbb{R}$, $\gamma_i \ge 0$ (i = 1, ..., n) とする. 問題 (P) の最適解 \mathbf{x}^* を利用して,以下の算術幾何平均の不等式が成り立つことを示せ.

$$\frac{1}{n}\sum_{i=1}^{n}\gamma_{i} \ge \left(\prod_{i=1}^{n}\gamma_{i}\right)^{1/n}$$

- (ii) 正の整数 n に対して, \mathcal{F}_n を \mathbb{R}^n から \mathbb{R} への非負の凸関数の集合とする.以下の (A), (B) に答えよ.
- (A) $f \in \mathcal{F}_n$ が与えられたとき、関数 $g_f: \mathbb{R}^n \to \mathbb{R}$ を $g_f(\boldsymbol{x}) = f(\boldsymbol{x})^2$ ($\boldsymbol{x} \in \mathbb{R}^n$) と定義する. そのとき、任意の $f \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$ に対して、 g_f が凸関数であることを示せ.
- (B) 正の数 $\alpha \in \mathbb{R}$ と $f \in \mathcal{F}_n$ が与えられたとき,関数 $h_{f,\alpha}:\mathbb{R}^n \to \mathbb{R}$ を $h_{f,\alpha}(\boldsymbol{x}) = f(\boldsymbol{x})^{\alpha}$ ($\boldsymbol{x} \in \mathbb{R}^n$) と定義する.そのとき,すべての $\alpha \geq \alpha^*$ と $f \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$ に対して, $h_{f,\alpha}$ が凸関数であるような最小な $\alpha^* \in \mathbb{R}$ を求めよ.その際, α^* が最小であることを示せ.

Operations Research

3

Answer the following questions (i) and (ii).

(i) Consider the following nonlinear programming problem:

(P) Maximize
$$\theta(x)$$
 subject to $x \in X$,

where the decision variable is $\boldsymbol{x} \in \mathbb{R}^n$, the objective function $\theta \colon \mathbb{R}^n \to \mathbb{R}$ and the feasible set $X \subseteq \mathbb{R}^n$ are defined by

$$\theta(\boldsymbol{x}) = \left(\prod_{i=1}^n x_i\right)^{1/n} \quad \text{and} \quad X = \left\{\boldsymbol{x} \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = 1, \ x_i \ge 0 \ (i = 1, \dots, n)\right\},$$

respectively. It is known that the optimal solution \boldsymbol{x}^* of (P) is unique, and that the function θ is concave (that is, $-\theta$ is convex) on $\mathbb{R}^n_{++} = \{\boldsymbol{x} \in \mathbb{R}^n \mid x_i > 0 \ (i = 1, ..., n)\}$. Answer the following questions (a), (b) and (c).

- (a) Write out the Karush-Kuhn-Tucker conditions of (P). (Note that (P) is a maximization problem.)
- (b) Obtain the optimal solution x^* of (P).
- (c) By using the solution \mathbf{x}^* of (P), show that for all $\gamma_i \in \mathbb{R}$ with $\gamma_i \geq 0$ (i = 1, ..., n), the inequality of arithmetic and geometric means holds, that is,

$$\frac{1}{n}\sum_{i=1}^{n}\gamma_{i} \ge \left(\prod_{i=1}^{n}\gamma_{i}\right)^{1/n}.$$

- (ii) Let n be a positive integer number and \mathcal{F}_n be the set of all convex and nonnegative functions from \mathbb{R}^n to \mathbb{R} . Answer the following questions (A) and (B).
- (A) For a given function $f \in \mathcal{F}_n$, define $g_f \colon \mathbb{R}^n \to \mathbb{R}$ as $g_f(\boldsymbol{x}) = f(\boldsymbol{x})^2$ ($\boldsymbol{x} \in \mathbb{R}^n$). Prove that g_f is convex for all $f \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$.
- (B) For a given positive number $\alpha \in \mathbb{R}$ and a function $f \in \mathcal{F}_n$, define $h_{f,\alpha} \colon \mathbb{R}^n \to \mathbb{R}$ as $h_{f,\alpha}(\boldsymbol{x}) = f(\boldsymbol{x})^{\alpha} \ (\boldsymbol{x} \in \mathbb{R}^n)$. Obtain the minimum value of $\alpha^* \in \mathbb{R}$ such that $h_{f,\alpha}$ is convex for all $\alpha \geq \alpha^*$ and $f \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$. Justify your answer.