基礎力学

5

質量 m の質点が平面内で中心力を受けて運動している. ここで (r,ϕ) を極座標とし、軌道の位置は $(x,y)=(r\cos\phi,r\sin\phi)$ であらわす. 力の中心を座標原点として、以下の問いに答えよ.

(i) $r^2 \frac{d\phi}{dt}$ が時刻 t に依らず、一定値であることを示せ.

以下では,
$$r^2 \frac{d\phi}{dt} = h$$
 とおく.

- (ii) 軌道が極座標 (r,ϕ) によって, $r=\frac{l}{1+\epsilon\cos\phi}$ と表される時, 中心力 f(r) を距離 r および h の関数として求めよ. ただし, l,ϵ は, 正の定数とする.
- (iii) 軌道が極座標 (r,ϕ) によって, $r=\frac{A}{\cosh(\alpha\phi)}$ と表される時, 中心力 f(r) を距離 r および h の関数として求めよ. ただし, A,α は, 正の定数とする.

An English Translation:

Basic Mechanics

5

Consider the planer motion of a particle with the mass m subject to a central force, where the center of force is the origin in the coordinate system. Let (r, ϕ) be the polar coordinates and the position of the particle be given by $(x, y) = (r \cos \phi, r \sin \phi)$. Answer the following questions.

(i) Show that $r^2 \frac{d\phi}{dt}$ is a constant of motion.

Let
$$r^2 \frac{d\phi}{dt} = h$$
.

- (ii) Suppose that the orbit is given by $r = \frac{l}{1 + \epsilon \cos \phi}$ with the polar coordinates (r, ϕ) where ϵ and l are positive constants. Obtain the central force f(r) as a function of r and h.
- (iii) Suppose that the orbit is given by $r = \frac{A}{\cosh(\alpha\phi)}$ with the polar coordinates (r, ϕ) , where A and α are positive constants. Obtain the central force f(r) as a function of r and h.