2

G=(V,E) を節点集合 V,枝集合 E から成る単純有向グラフとし,N=[G,c] を G の各枝 $e\in E$ に実数値の容量 c(e)>0 を与えて得られるネットワークとする.節点の部分集合 $X,Y\subseteq V$ に対し,X 内の点から Y 内の点へ向かう枝の集合を E(X,Y) と記す.非負実数全体の集合を \mathbb{R}_+ で表す.指定された二点 $s,t\in V$ に対し,流量保存則 $\sum_{e\in E(\{v\},V\setminus\{v\})}f(e)-\sum_{e\in E(V\setminus\{v\},\{v\})}f(e)=0$ 、 $\forall v\in V\setminus\{s,t\}$ および容量制約 $f(e)\leq c(e)$ 、 $\forall e\in E$ を満たす関数 $f:E\to\mathbb{R}_+$ を (s,t) フローと呼び,その流量 val(f) を

$$\sum_{e \in E(\{s\}, V \setminus \{s\})} f(e) - \sum_{e \in E(V \setminus \{s\}, \{s\})} f(e)$$

で定める.また, $s\in X,\,t\in V\setminus X$ を満たす節点の部分集合 $X\subseteq V$ を (s,t) カットと呼び,その容量 $\mathrm{cap}(X)$ を

$$\sum_{e \in E(X, V \setminus X)} c(e)$$

で定める. 以下の問いに答えよ.

(i) 任意の(s,t)フローfと(s,t)カットXに対し、等式

$$val(f) = \sum_{e \in E(X, V \setminus X)} f(e) - \sum_{e \in E(V \setminus X, X)} f(e)$$

が成り立つことを証明せよ.

- (ii) 与えられた (s,t) フロー f に対して定められる残余ネットワーク $N_f = [G_f = (V,E_f),c_f]$ の作り方を説明せよ.
- (iii) 残余ネットワーク N_f において、s から t への有向路が存在するとき、そのひとつを P とする、P 上の枝の N_f における容量の最小値を Δ とするとき、N には流量が $\mathrm{val}(f) + \Delta$ である (s,t) フローが存在することを証明せよ.
- (iv) 残余ネットワーク N_f が s から t への有向路をもたないとき, N_f において s から到達可能な節点の集合を S とする.このとき, $s \in A$ である任意の集合 $A \subsetneq S$ に対し $\operatorname{cap}(A) > \operatorname{cap}(S)$ が成り立つことを証明せよ.

An English Translation:

Graph Theory

2

Let G = (V, E) be a simple directed graph with a vertex set V and an edge set E, and let N = [G, c] be a network obtained from G by assigning a real value c(e) > 0 to each edge $e \in E$ as its capacity. For vertex subsets $X, Y \subseteq V$, let E(X, Y) denote the set of edges that leave a vertex in X and enter a vertex in Y. Let \mathbb{R}_+ denote the set of nonnegative reals. For two designated vertices $s, t \in V$, an (s, t)-flow is defined to be a mapping $f: E \to \mathbb{R}_+$ which satisfies $\sum_{e \in E(\{v\}, V \setminus \{v\})} f(e) - \sum_{e \in E(V \setminus \{v\}, \{v\})} f(e) = 0$, $\forall v \in V \setminus \{s, t\}$ (flow conservation law) and $f(e) \subseteq c(e)$, $\forall e \in E$ (capacity constraint), and its flow value val(f) is defined to be

$$\sum_{e \in E(\{s\}, V \setminus \{s\})} f(e) - \sum_{e \in E(V \setminus \{s\}, \{s\})} f(e).$$

An (s,t)-cut is defined to be a vertex subset $X \subseteq V$ such that $s \in X$ and $t \in V \setminus X$, and its capacity $\operatorname{cap}(X)$ is defined to be

$$\sum_{e \in E(X, V \setminus X)} c(e).$$

Answer the following questions.

(i) Prove that for any (s,t)-flow f and any (s,t)-cut X

$$val(f) = \sum_{e \in E(X, V \setminus X)} f(e) - \sum_{e \in E(V \setminus X, X)} f(e)$$

holds.

- (ii) For a given (s,t)-flow f, show how to construct its residual network $N_f = [G_f = (V, E_f), c_f]$.
- (iii) For an (s, t)-flow f in N, assume that there is a directed path P from s to t in the residual network N_f . Let Δ denote the minimum capacity of an edge in P in N_f . Prove that N has an (s, t)-flow whose flow value is $val(f) + \Delta$.
- (iv) For an (s, t)-flow f in N, assume that there is no directed path from s to t in the residual network N_f . Let S denote the set of vertices that are reachable from s in N_f . Prove that $\operatorname{cap}(A) > \operatorname{cap}(S)$ holds for any set $A \subsetneq S$ with $s \in A$.