力学系数学

6

n>1を整数, $f:\mathbb{R}^n\to\mathbb{R}^n$ を C^1 級関数として, \mathbb{R} 上の微分方程式系

$$\frac{dx}{dt} = f(x), \quad x \in \mathbb{R}^n \tag{1}$$

を考える. $x=\phi(t)$ を \mathbb{R} 上で有界な式 (1) の非定数解とする. 次式を式 (1) の解 $x=\phi(t)$ のまわりの変分方程式という.

$$\frac{dy}{dt} = Df(\phi(t))y, \quad y \in \mathbb{R}^n$$
 (2)

ここで、Df(x) は f(x) のヤコビ行列で、各 $j=1,2,\ldots,n$ に対して、 $f_j(x)$ と x_j を、それ ぞれ、f(x) と x の第 j 成分として、

$$Df(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x) & \cdots & \frac{\partial f_n}{\partial x_n}(x) \end{pmatrix}$$

で与えられるn次正方行列である.以下の問いに答えよ.

- (i) 極限 $a_+ = \lim_{t \to +\infty} \phi(t)$ と $a_- = \lim_{t \to -\infty} \phi(t)$ が存在するとき, $x = a_+$ と a_- が式 (1) の定数解であることを示せ.また,変分方程式 (2) が $\lim_{t \to \pm \infty} \psi(t) = 0$ かつ $\mathbb R$ 上で有界な解 $y = \psi(t)$ をもつことを示せ.
- (ii) 次式を満たす C^1 級関数 $u: \mathbb{R}^n \to \mathbb{R}^n$ が存在するものとする.

$$Du(x)f(x) - Df(x)u(x) = 0$$

2 個のベクトル $f(\phi(0))$ と $u(\phi(0))$ が線形独立であるとき、変分方程式 (2) の線形独立な解を 2 個求めよ.

(iii) 次式を満たす n-1 個の C^1 級関数 $v_j:\mathbb{R}^n\to\mathbb{R}^n$ $(j=1,2,\ldots,n-1)$ が存在するものとする.

$$Dv_j(x)f(x) - Df(x)v_j(x) = 0 \quad (j = 1, 2, ..., n - 1)$$

n 個のベクトル $f(\phi(0))$ と $v_j(\phi(0))$ $(j=1,2,\ldots,n-1)$ が線形独立であるとき、変分方程式 (2) の一般解を求めよ.

An English Translation:

Mathematics for Dynamical Systems

6

Let n > 1 be an integer and let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 function. Consider the system of differential equations

$$\frac{dx}{dt} = f(x), \quad x \in \mathbb{R}^n \tag{1}$$

on \mathbb{R} . Let $x = \phi(t)$ be a bounded nonconstant solution to Eq. (1) on \mathbb{R} . The following equation is called the variational equation of Eq. (1) around the solution $x = \phi(t)$:

$$\frac{dy}{dt} = Df(\phi(t))y, \quad y \in \mathbb{R}^n.$$
 (2)

Here Df(x) is the Jacobian matrix of f(x) and given by the $n \times n$ matrix

$$Df(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x) & \cdots & \frac{\partial f_n}{\partial x_n}(x) \end{pmatrix},$$

where $f_j(x)$ and x_j are the j-th elements of f(x) and x, respectively, for j = 1, 2, ..., n. Answer the following questions.

- (i) When there exist the limits $a_+ = \lim_{t \to +\infty} \phi(t)$ and $a_- = \lim_{t \to -\infty} \phi(t)$, show that $x = a_+$ and a_- are constant solutions to Eq. (1). In addition, show that the variational equation (2) has a bounded solution $y = \psi(t)$ on \mathbb{R} such that $\lim_{t \to +\infty} \psi(t) = 0$.
- (ii) Assume that there exists a C^1 function $v: \mathbb{R}^n \to \mathbb{R}^n$ satisfying

$$Dv(x) f(x) - Df(x)v(x) = 0.$$

Obtain two linearly independent solutions to the variational equation (2) when the two vectors $f(\phi(0))$ and $v(\phi(0))$ are linearly independent.

(iii) Assume that there exist n-1 C^1 functions $v_j: \mathbb{R}^n \to \mathbb{R}^n$ $(j=1,2,\ldots,n-1)$ satisfying

$$Dv_j(x)f(x) - Df(x)v_j(x) = 0$$
 $(j = 1, 2, ..., n - 1).$

Obtain a general solution to the variational equation (2) when the n vectors $f(\phi(0))$ and $v_j(\phi(0))$ (j = 1, 2, ..., n - 1) are linearly independent.