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Let n > 1 be an integer and let f : R® — R” be a C! function. Consider the system of

differential equations
d
= =f@), zeR" M

on R. Let x = ¢(t) be a bounded nonconstant solution to Eq. (1) on R. The following
equation is called the variational equation of Eq. (1) around the solution z = ¢(¢):
dy
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Here D f(z) is the Jacobian matrix of f(x) and given by the n x n matrix
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where f;(z) and xz; are the j-th elements of f(z) and z, respectively, for j =1,2,...,n.

Answer the following questions.

(i) When there exist the limits a; = lim ¢(¢) and a— = lim ¢(t), show that x = a,
t—+o00 t——o0
and a_ are constant solutions to Eq. (1). In addition, show that the variational

equation (2) has a bounded solution y = ¥ (¢) on R such that tlirin P(t) =0.
— 00

(ii) Assume that there exists a C* function v : R™ — R" satisfying
Do(a)f(x) - Df(x)o(x) = 0.

Obtain two linearly independent solutions to the variational equation (2) when the

two vectors f(¢(0)) and v(¢(0)) are linearly independent.

(iii) Assume that there exist n — 1 C* functions v; : R* — R" (j = 1,2,...,n — 1)
satisfying
Duvj(z)f(x) = Df(z)vj(x) =0 (j=1,2,...,n—1).
Obtain a general solution to the variational equation (2) when the n vectors f(¢4(0))

and v;(¢(0)) (j =1,2,...,n — 1) are linearly independent.



